
In
d

u
st

ri
a
l
 E

le
c
tr

ic
a
l
E
n

g
in

e
e
ri
n

g
 a

n
d

A

u
to

m
a
ti
o

n

 CODEN:LUTEDX/(TEIE-5510)/1-84/(2024)

Developing Stabilization System
for Body-Worn Camera

Adam Bladh
Jakob Göransson

Division of Industrial Electrical Engineering and Automation
Faculty of Engineering, Lund University

Developing Stabilization System for Body-Worn

Camera

Adam Bladh & Jakob Göransson

Division of Industrial Electrical Engineering and Automation (LTH)

MSc Thesis TEIE-5510

Division of Industrial Electrical Engineering and Automation (LTH)
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2024 by Adam Bladh & Jakob Göransson. All rights reserved.
Printed in Sweden.
Lund 2024

Abstract

This thesis focuses on the development of an image stabilization system for
body-worn cameras. Body-worn cameras are frequently used in dynamic
situations, exposing them to intense movements. Capturing sharp, high-
quality footage in these conditions requires effective image stabilization
systems. This investigation involved mapping the nature of the disturbances
experienced by the body-worn camera through data collection and an
external search for information. With a comprehensive literature study and
the gathered data, a gimbal-based stabilization system was designed. The
design process included selecting the necessary electrical components and
developing custom software. CAD drawings of the design were created,
followed by 3D printing of the parts. These parts were then assembled with
the other components to construct a prototype. The prototype’s performance
was tested demonstrating an improvement in image stability. This study
provides insight into image stabilization systems and their complexity. It
also offers a practical solution to mitigate the unwanted effects of camera
movement, enhancing the reliability of surveillance in dynamic settings.

Keywords: Image stabilization, body-worn camera, gimbal

Abbreviations

OIS - Optical Image Stabilization

EIS - Electronic Image Stabilization

MIS - Mechanical Image Stabilization

IMU - Inertial Measurement Unit

MCU - Micro controller Unit

FOC - Field-Oriented Control

DOF - Degrees of Freedom

BLDC - Brushless Direct Current

PID - Proportional–Integral–Derivative

Acknowledgements

First we would like to thank our academic supervisor Avo Reinap at the
Division of Industrial Electrical Engineering and Automation (IEA), for all
the help and support during this project.

We would also like to thank our company supervisor Albin Berggren for
suggesting and guiding us through this project, and connecting us to
the correct experts in the company. A big thank you to the SPE team
at the company, especially Sebastian Göbel, Allan Hubble and Jonathan
Hägerbrand for always having the time to answer our questions and discussing
our ideas.

Preface

This work was done in collaboration with the Division of Industrial Electrical
Engineering and Automation (IEA) at LTH, and an outside company. All
parts of the thesis are a joint contribution between Adam Bladh and Jakob
Göransson.

Great things are done by a series of
small things brought together.

- Vincent Van Gogh

Contents
1. Introduction 1

1.1 Background . 1
1.2 State of the Art . 1
1.3 Problem formulation and objectives 2
1.4 Limitations . 3
1.5 Course of work . 4
1.6 Contribution . 4
1.7 Outline . 5

2. Technical background 6
2.1 Image stabilization . 6

2.1.1 Optical image stabilization 6
2.1.2 Electronic image stabilization 8
2.1.3 Mechanical image stabilization 9

2.2 Gyroscope . 9
2.3 Accelerometer . 9
2.4 Magnetometer . 10
2.5 Inertial measurement unit 10
2.6 Sensor fusion . 10
2.7 Brushless direct current motor 11
2.8 Field-oriented control . 12
2.9 Coordinate systems . 13
2.10 Nautical sequence . 13
2.11 Gimbal lock . 15
2.12 Quaternions . 16

3. Image stabilization requirements 19
3.1 Data gathering . 19
3.2 Data processing . 21

3.2.1 Quaternion data . 21
3.2.2 Range of motion . 22
3.2.3 Angular rotation, velocity, and acceleration calculations 23

3.3 Data evaluation . 29

4. Prototype design 30
4.1 Choice of image stabilization system 30

Contents

4.2 Concept Generation & Selection 32
4.3 General system architecture 34
4.4 Component selection . 35
4.5 CAD models . 36

4.5.1 First iteration . 36
4.5.2 Second iteration . 37
4.5.3 Third iteration . 38

4.6 Final Prototype design . 40

5. System Implementation 41
5.1 Kinematics . 41

5.1.1 Coordinate systems 41
5.1.2 Conversion between quaternions and motor angles . . 43
5.1.3 Controller objective 46

5.2 Software implementation . 48
5.2.1 Motor angle calculation 48
5.2.2 Motor control algorithm 50

6. Final evaluation 52
6.1 Evaluation setup . 52
6.2 Evaluation results . 54
6.3 Evaluation discussion . 56

7. Conclusions 57
7.1 General . 57
7.2 Further work . 57

Bibliography 59

A. MATLAB code 62
A.1 QuaternionAngles . 62
A.2 QuaternionSphere . 65
A.3 QuaternionToMotorAngle 67

B. Arduino code 69

1
Introduction

Provides an introduction of this master thesis and states the background,
objectives and limitations.

1.1 Background

Security concerns have become increasingly important in today’s modern
society. This sparks the necessity of developing new sophisticated surveillance
technologies to protect properties, individuals and public places. Security
cameras have taken a vital role in this development and are indispensable
tools for threat detection and surveillance. In recent years, mobile body-worn
cameras have emerged as essential technology for uniform occupations like
police, military and security guards. This have introduced new challenges for
surveillance camera technology. One of those challenges is the gathering of
high quality footage under intense movements. The unwanted vibrations and
shakes occurring from walking and running deteriorate the captured footage,
making it harder to watch and to capture important situations. To solve this
problem, different image stabilization technologies have been developed in
recent years. Their goal is to reduce blurriness in photos and videos caused
by camera movement, allowing for better image clarity and overall improved
visual quality.

1.2 State of the Art

Image stabilization is a critical feature in modern cameras, essential for
capturing sharp, high-quality footage. An effective image stabilization system
is especially important for body-worn cameras used in uniform occupations,
where dynamic situations are common. The demand for advanced image
stabilization systems have therefore increased. Recent years have seen
significant advancements in state-of-the-art image stabilization technology.

For body-worn cameras, the VM780 Body Camera Micro Gimbal Stabilizer
by Hytera is a notable development. Its “mini-gimbal” structure, which tilts
the image sensor and lens together, provides some anti-shake capabilities for
wearable devices [Hytera, 2023].

1

Chapter 1. Introduction

Another product offering anti-shaking technology is the Ordro EP8 4K Head
Mounted Camera, featuring a built-in two-axis gimbal anti-shake system
[Ordro, n.d.].

Despite these advancements, current stabilization systems are often
insufficient to handle larger vibrations, such as those caused by walking
or running. This has led to ongoing research and development efforts to
improve image stabilization systems for body-worn cameras.

1.3 Problem formulation and objectives

The purpose of this thesis is to provide an overview of the currently available
stabilization methods for cameras, investigate which vibrations affect the
footage from the body-worn camera, and evaluate each stabilization method’s
ability to reduce these vibrations. Furthermore, based on the results of this
investigation, a solution shall be proposed and a prototype will be designed,
constructed and tested to see if it reduces vibrations in the recorded footage.

The body-worn camera currently uses electronic image stabilization to help
reduce the effects of high-frequency, low-amplitude vibrations. However,
this stabilization system is insufficient when the camera experiences lower
frequency, higher amplitude disturbances, such as those from walking and
running. To address these types of vibrations, a new image stabilization
system needs to be considered. The objective of this new image stabilization
system is to counteract the larger disturbances resulting from external forces,
ensuring better-captured footage.

To develop an image stabilization system for the body-worn camera, an
understanding of the currently available stabilization methods is needed.
The exact nature of the disturbances affecting the camera also needs to be
investigated. A significant part of the work therefore involves a comprehensive
literature study to gather information in the following areas:

• Types of stabilization methods for cameras.

• Existing solutions to stabilize body-worn cameras.

• The magnitude and types of disturbances affecting the body-worn
camera.

2

1.4 Limitations

Information about the disturbances affecting the body-worn camera is
gathered through experimentation. This data maps the expected movement
of the camera and sets the limitations of the stabilization system. These
observations are then used to propose possible solutions that decrease the
disturbances. Following this, an analysis is done to find a suitable solution,
which is then developed into a prototype.

1.4 Limitations

The purpose of this thesis is to identify the disturbances caused by the
wearer’s upper body movement and propose solutions to counteract them.
Therefore, unwanted disturbances caused by other factors are not considered.

In their thesis, Image Stabilization for Body-Worn Cameras, Samuel
Bryngelsson and Jonathan Gustafsson looked at the stabilization of a body-
worn camera by designing different mounts. Some of their findings serve as a
basis for the work in this report. Based on their investigation, the following
limitations have been set:

• The thesis compared fastening a body-worn camera with a magnet
holster or a camera harness. By tracking an object in the recorded
footage, the deviation of the object relative to the original image could
be estimated. Using the worst-case estimation, an area of deviation was
established to show how much the tracked object deviated compared
to the original image size. The study found that the deviation area
decreased from 65% to 21% of the original image size when using the
harness instead of the holster [Bryngelsson and Gustafsson, 2023]. In
other words, unwanted movements would occur if the camera was not
well fastened. Therefore this thesis will use a similar camera harness,
in order to minimize unwanted disturbances.

• In the thesis it was also found that the location of the body-
worn camera impacted the vibrations affecting it [Bryngelsson and
Gustafsson, 2023]. It is deemed outside the scope of this thesis to test
and wear the body-worn camera in different locations on the body and
only one position will be used.

• Finally, the thesis concluded that rotational movements of the body-
worn camera had a larger impact on the destabilization of the
recorded footage compared to translational movements [Bryngelsson
and Gustafsson, 2023]. Therefore, the solution sought in this work will
focus on eliminating rotational movements of the camera rather than
addressing translational movements.

3

Chapter 1. Introduction

Furthermore, an electronic image stabilization system already exist in the
body-worn camera, which is assumed to adequately handle small vibrations.
The new image stabilization system shall therefore focus on larger vibrations,
specifically the ones occurring during walking and running.

The goal of this work also includes the design, assembly, and evaluation of a
functional prototype. In this context, the concept of the solution is prioritized
over its size. Therefore, it is not a requirement that the finished prototype
fits inside of the body-worn camera.

1.5 Course of work

The thesis began with a comprehensive literature study on the concept of
image stabilization. Discussions with employees at the company were also
conducted to understand practical implementations and current measures in
the body-worn cameras. Following this, data on the movements affecting
the camera was collected and analyzed, establishing the foundation for
the stabilization system’s requirements. Various concepts and systems were
evaluated against these requirements, leading to the selection of a gimbal
system as the final concept.

Next, the necessary electrical components for the system were chosen, CAD
models of the prototype were created, and the parts were 3D printed.
Each component was individually tested to evaluate its performance, and
corresponding software was developed. The components were then assembled
with the 3D printed parts, and the main software code was produced. Finally,
tests were conducted on the prototype to asses its performance.

1.6 Contribution

This thesis aims to further the knowledge of stabilization systems for body-
worn cameras and the challenges they face. One part is to chart the vibrations
affecting the camera due to the wearer walking or running. The other part
is to propose a design for a stabilization system capable of counteracting
the charted vibrations. This design is also realized as a prototype and its
effectiveness is evaluated.

4

1.7 Outline

1.7 Outline

Chapter 1 Provides an introduction to the subject and problem, as well as
limitations and the course of work of the study.

Chapter 2 Gives theoretical information about key components and topics
discussed in the project.

Chapter 3 Outlines the method used to gather data about the body-worn
cameras movements. Also explains how the data is processed and
turned into a set of requirements.

Chapter 4 Presents the design process for the prototype, starting with
concept generation, explaining component choices, showcasing several
design iterations and ending with the assembled prototype.

Chapter 5 Goes through the theory and kinematics guiding the controller
design, and how the software implementation is done.

Chapter 6 Presents the final evaluation of the prototype, detailing the
testing process and the results obtained.

Chapter 7 Concludes the thesis with a final reflection of the entire project,
and a recommendation for areas that should be further explored.

5

2
Technical background

This chapter explains and expands on theories and equations used throughout
the thesis in subsequent chapters. The information presented is based upon
an extensive literature search and serve as the foundation for the work done
in this thesis.

2.1 Image stabilization

There is no definitive way to categorize different image stabilization systems.
For this thesis, the systems have been divided into three main categories:
Optical Image Stabilization (OIS), Electronic Image Stabilization (EIS) and
Mechanical Image Stabilization (MIS). They are categorised as follows: OIS
corrects disturbances by physically moving components like lenses and image
sensors inside the camera. EIS corrects disturbances using software that
digitally corrects frame by frame to counteract the unwanted motion. MIS
corrects disturbances by physically moving the whole camera. Furthermore,
the information presented in this section is relevant for small scale cameras,
such as those used in body-worn cameras or in mobile phones.

2.1.1 Optical image stabilization

OIS is a technique designed to reduce the effects of involuntary camera
shakes. It utilizes sensors to gather data about undesired movements and
then uses this information to make real-time physical adjustments to optical
elements inside the imaging system. The technology aims to keep the
trajectory for the optical path between the target and the image sensor
aligned and constant when exposed to unintended vibrations [Rosa et al.,
n.d.]. Figure 2.1 shows a simplified demonstration of the basic principle of
an OIS system. The difference between point X and Y in the left image leads
to lower image quality. This degradation is then fixed in the right image by
moving a lens to compensate for displacement and correct the optical patch.

6

2.1 Image stabilization

There are several ways to implement an OIS system into a camera. The two
most common methods are lens shift and camera tilt. Lens shift moves the
internal lenses using translational motion while keeping the image sensor
fixed (similar to the system demonstrated in figure 2.1). Camera tilt on the
other hand moves both the internal lenses and the image sensor in unity with
angular motion [Rosa et al., n.d.]. Advanced systems also exist where the
internal lenses and image sensor move separately but in tandem to produce
even better stabilization and sharper images [Nicholson and Summersby,
2024].

Figure 2.1 Demonstration of an OIS system [ROHM Semiconductor, 2013]

All methods usually require miniaturized actuators, drivers, high-precision
sensors and microcontrollers. The sensors gather data on the disturbances
affecting the system and send this data to the microcontroller. The
microcontroller executes a control algorithm to determine the necessary
corrections and transmits this information to the drivers. The drivers
convert the information into commands for the actuators. With the correct
commands, the actuators physically move the camera module the precise
amount and in the required direction [Rosa et al., n.d.].

The majority of OIS systems, in today’s market, deliver motion correction
angles of approximately one degree. This is sufficient to correct and counter
jitters caused by human hands in stationary settings. For dynamic conditions
like walking and running, the amplitude of the generated shakes generally
exceeds one degree. These conditions require greater compensation angles to
achieve efficient image stabilization [Hansen, 2023].

7

Chapter 2. Technical background

2.1.2 Electronic image stabilization

EIS, also known as digital image stabilization, aims to reduce distortion
introduced by involuntary camera shakes solely with the use of software. This
form of stabilization uses digital processing techniques on captured images
and videos. One of the techniques involves cropping portions of images that
deviate from a predefined area, centering the image, and then enlarging it to
meet the required dimensions [Golik, 2006].

Figure 2.2 demonstrates this process. The top row shows the unstable image
sequence. The software then takes the center of focus and aligns it in each
frame, which introduces cropping and/or areas without data, as seen in the
middle row. This is then compensated for in the last row by introducing
borders or enlarging the frames.

Figure 2.2 Demonstration of an EIS system [Golik, 2006]

The process requires the frames to move, necessitating the introduction of
margins. This can be accomplished either by enlarging the image sensor or
through digital magnification. Both methods negatively impact the system.
A larger image sensor increases the size and cost of the build, while digital
magnification reduces quality and increases the loss of visual information,
due to cropping and enlargement of frames. The extent of the stabilization
is therefore significantly limited by these factors [Golik, 2006].

8

2.2 Gyroscope

2.1.3 Mechanical image stabilization

MIS works by using sensors to detect shifts in the camera platform and
then counteract any unwanted motion by physically moving the platform
[Souza and Pedrini, 2018]. One commonly used MIS system is the gimbal
system. It detects camera shakes using sensors, and sends the sensor data to
a microprocessor to compute the amount and direction of correction. This
information is then transmitted to a control system that actuates motors to
move the camera in order to counteract the detected motion. These systems
efficiently minimize vibrations but require additional components, such as
actuators, sensors and drivers, which increase weight and power consumption
[Doe, 2024].

2.2 Gyroscope

Gyroscopes are devices that measure the angular rate of motion. They are
mounted on objects where they can detect angular velocity when the object
rotates. Various classes of gyroscopes exist, such as mechanical, optical, and
electromechanical. Each utilizes different technologies to acquire the same
result. The one used in this thesis is the Micro-Electro-Mechanical System
(MEMS) gyroscope. MEMS gyroscopes, unlike traditional gyroscopes, do
not include rotating parts that require bearings. They instead utilize
vibrating mechanical components as their sensing elements to detect angular
velocity. The technology functions by leveraging the Coriolis effect, where
the vibrating component experiences deflection when exposed to rotation
[Passaro et al., 2017]. The MEMS gyroscopes are ideal for applications with
size and weight constraints and are commonly used in electronic devices such
as wearable gadgets and smartphones. Their compact size and affordability
make them well-suited for mass production and widespread use in different
applications and industries [Ericco Inertial System, 2023].

2.3 Accelerometer

Accelerometers are sensor devices that measure the acceleration of motion.
Mounted on objects, they provide accurate measurements of the physical
acceleration experienced by that object. The most common type is the
piezoelectric accelerometer. This technology works by using a sensing crystal
with a seismic weight attached. When acceleration occurs, the crystal
experiences a force exerted by the weight. The piezoelectric crystal then
converts the force into electrical signals, which are measured and converted
into acceleration readings [Omega Engineering, n.d.].

9

Chapter 2. Technical background

Accelerometers can be found in a lot of different technologies. Nearly all
smartphones are equipped with an accelerometer, and they are also found in
airbags, drones, and on space stations [Omega Engineering, n.d.].

2.4 Magnetometer

Magnetometers are sensor devices that measures magnetic fields. They can
detect the strength and orientation of magnetism, such as the relative change
of a magnetic field at a point or the magnetization of a material. There are
different types of magnetometers. Scalar magnetometers, such as the Proton
Precession Magnetometer, work by utilizing an external magnetic field to
align hydrogen atoms within a fluid. When the field is removed, the protons
revert back to their original orientation while emitting a signal. This signal
can then be measured and converted into magnetic field strength. Vector
magnetometers, like Fluxgate Magnetometers, work by wrapping a compact
magnetic core with two coils of wire. An alternating current is transmitted
through one coil, causing the core to magnetize and demagnetize rapidly. The
second coil then registers changes in the magnetic field. Magnetometers are
valuable sensors that are useful in a lot of different applications. They are
commonly used to measure the earth’s magnetic field, locate resources, and
navigate our surroundings [Electricity & Magnetism, 2024].

2.5 Inertial measurement unit

An Inertial measurement unit (IMU) is a electronic device that combines
different sensors to collect data. They are among the most common devices
used in navigation systems, motion captures, and robotics. IMUs typically
integrate multiple sensors such as 3-axis gyroscopes, 3-axis accelerometers,
and occasionally 3-axis magnetometers. These units combine all the previous
sensors to track and measure acceleration, force, angular rate, and magnetic
fields. With sensor fusion, all measurements can be merged to offer heading
and orientation in 3D space [Gunasekaran, 2019].

2.6 Sensor fusion

Sensor fusion is an algorithm used to processes data gathered from sensors.
It considers the different sensors’ advantages and disadvantages to enhance
the overall system’s accuracy. Since sensors alone only generate raw data, an
algorithm needs to optimize and convert this raw data into useful information
[Strout, 2023].

10

2.7 Brushless direct current motor

Each individual sensor also has major drawbacks that sensor fusion
mitigates. For example, accelerometers have problems with noise interference,
gyroscopes are prone to drift, and magnetometers suffer from electromagnetic
interference. There are three commonly used algorithms to fuse the IMU
sensor data: Kalman filters, complementary filters, and the Madgwick
algorithm [Strout, 2023].

2.7 Brushless direct current motor

Brushless direct current (BLDC) motors are powerful and compact electric
motors frequently found in both industrial and household electronics. They
offer improved efficiency, lower operational noise, a higher torque-to-weight
ratio, and rapid response compared to other types of motors. BLDC motors
use electronic commutation instead of brushes, enhancing their performance
and longevity. Like most electrical motors, the basic physical construction is
separated into two parts, the stator and the rotor. This is shown in figure 2.3.
The stator is the stationary part with windings that act as electromagnets
when current is applied. The rotor is the rotating part with permanent
magnets. The electromagnets generate magnetic fields that interact with
the permanent magnets in the rotor, making the rotor rotate. This rotation
occurs due to the attraction and repulsion forces between the magnetic poles.
With a dedicated controller, the magnetic fields from the stator windings
alternate in a desired manner by switching the current flow [Jenish, 2023].
The controller utilizes an algorithm to create the appropriate currents, which
produce magnetic fields that ensure the desired motion of the motor. One of
the most efficient control algorithms for electrically commutated motors is
the Field-Oriented Control (FOC) algorithm [Skuric et al., 2022].

Figure 2.3 Simplified model of a BLDC motor[EDN, 2010]

11

Chapter 2. Technical background

2.8 Field-oriented control

FOC is a technique used for controlling various electrically driven motors. It is
an advanced mathematical method for controlling the behavior of electrical
motors, enhancing their efficiency and position accuracy [Goodwin, 2023].
The basic idea involves controlling motor torque by managing the three-
phase stator currents. To maximize generated torque, the stator field vector
most remain perpendicular to the rotor field vector. This is achieved by
measuring the rotor position and then manipulating the three-phase stator
currents (ia, ib, ic) to align the stator field vector orthogonal to the measured
rotor position. The stator field vector is separated into its direct axis (d-
axis) and quadrature axis (q-axis). The d-axis aligns with the rotor field
vector, while the q-axis is 90 degrees to the d-axis. By forcing the d-axis
to zero and maximizing the q-axis, the stator field vector and rotor field
vector remain perpendicular to each other [Ulusoy, 2020]. The Clark and Park
transformations are used to convert the three-phase stator currents from the
stationary reference frame (a, b ,c) to the rotating reference frame (d, q),
and vice versa. This mathematically converts the three-phase time-variant
quantities into two-phase time-invariant quantities, allowing easier control
with PID controllers [Electrical4U, 2024]. Figure 2.4 shows an overview of a
standard control loop utilizing FOC.

Figure 2.4 Overview of a torque control loop utilizing FOC [Skuric et al., 2022]

12

2.9 Coordinate systems

2.9 Coordinate systems

To fully describe the motions of a body, one uses both a global and a local
coordinate system. The global coordinate system is detached from the body,
meaning it does not translate or rotate with it. The local coordinate system
is however attached to the body, usually located at the center of mass. In
contrast to the global coordinate system, the local coordinate system does
move and rotate with the body [Flores, 2015].

Several coordinate systems are referenced throughout this work, and are
further explained in their respective sections: 3.1 and 5.1.1.

2.10 Nautical sequence

One way to describe rotations in 3D space, is the nautical sequence. It consists
of three rotations: yaw θ, pitch ϕ, and roll ψ. To describe this sequence, a
reference coordinate system is first defined with positive x-, y-, and z-axes,
pointing in the forward, left, and up direction. Using this frame as a reference,
the first rotation in the nautical sequence is around the z-axis, followed by
a rotation around the y-axis, and finally a rotation around the x-axis. In
the nautical system, the reference coordinate system rotates alongside these
rotations [Haslwanter, 2018]. Refer to figure 2.5 for a visual representation
of the three rotations.

Figure 2.5 Image of the nautical sequence [Ardakani and Bridges, 2010]

Note that the nautical sequence not necessarily refers to a positive rotation
around the z-axis, followed by the y-axis and ending with the x-axis. The
order of rotations around the axis are dependent on how the coordinate
system is defined. With the nautical sequence it is the order of yaw, pitch
and roll, which is important to follow. How the rotations θ, ϕ, and ψ are
defined for the camera in this thesis, can be seen in figure 2.6.

13

Chapter 2. Technical background

Figure 2.6 Example of yaw, pitch and roll

The three rotations are expressed mathematically using the three rotation
matrices Rz(θ), Ry(ϕ), and Rx(ψ), shown in equations 2.1, 2.2, and 2.3. They
can all be combined into one rotation matrix, Rnautical, as seen in equation
2.4 [Haslwanter, 2018].

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 (2.1)

Ry(ϕ) =

 cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ

 (2.2)

Rx(ψ) =

1 0 0
0 cosψ − sinψ
0 sinψ cosψ

 (2.3)

Rnautical = Rz(θ)Ry(ϕ)Rx(ψ) =

=

cos θ cosϕ cos θ sinϕ sinψ − sin θ cosψ cos θ sinϕ cosψ + sin θ sinψ
sin θ cosϕ sin θ sinϕ sinψ + cos θ cosψ sin θ sinϕ cosψ − cos θ sinψ
− sinϕ cosϕ sinψ cosϕ cosψ

 (2.4)

The sequence of rotations presented in this section as the nautical sequence
may be known by another name. The three angles yaw, pitch, and roll can
be used in several other combinations to describe the same rotation in 3D
space [Haslwanter, 2018]. In this thesis, the nautical sequence, along with the
names and symbols for the three angels described in this section, are used
throughout the text.

14

2.11 Gimbal lock

2.11 Gimbal lock

A problem known as gimbal lock can occur with the nautical sequence and
similar three-angle sequences. For certain values of θ, ϕ, and ψ, singularities
occur. This can be shown mathematically by examining Rnautical from
equation 2.4, when ϕ = ±π

2 (or cos±π
2 = 0 and sin±π

2 = ±1) [Challis,
2021]. Equation 2.5 shows the resulting matrix.

Rnautical =

=

 0 ± cos θ sinψ − sin θ cosψ ± cos θ cosψ + sin θ sinψ
0 ± sin θ sinψ + cos θ cosψ ± sin θ cosψ − cos θ sinψ
∓1 0 0

 =

=

 0 − sin(θ ∓ ψ) ± cos(θ ∓ ψ)
0 cos(θ ∓ ψ) ± sin(θ ∓ ψ)
∓1 0 0

(2.5)

The rotation matrix now depends only on the difference or sum of the angles
θ and ψ. Changing either or both results in a rotation around the same
axis, meaning the matrix has lost one degree of freedom. This phenomenon,
called gimbal lock, can occur with any sequence of rotations similar to the
nautical sequence [Challis, 2021]. The problem of gimbal lock is also shown
in figure 2.7, which illustrates a three-axis gimbal system. The middle axis
(blue to light green) rotates the inner axis (light green to green), preventing
it from re-orienting in one of the three rotation directions. Consequently, the
rotation axis of the outermost (light blue to blue) and innermost axis become
the same [Haslwanter, 2018].

Figure 2.7 Illustration of gimbal lock, the inner axis (dark green) cannot be
rotated in the direction of the dotted arrows [Haslwanter, 2018]

15

Chapter 2. Technical background

There are ways to avoid gimbal lock. One way is to ensure that the sequence of
rotations made never reaches the singularity caused by gimbal lock [Challis,
2021]. Even approaching the gimbal lock orientation can cause problems, as
rapid movements are then required to change direction [Haslwanter, 2018].
This means that the gimbal’s allowable movement is restricted, and not all
orientations are attainable. Gimbal lock can also be avoided by using an
alternative method to represent the body’s orientation, one that does not
have the same singularity issue [Challis, 2021].

2.12 Quaternions

One of the ways to describe the orientation of an object in 3D space, instead
of using the angles yaw, pitch, and roll, is quaternions. Quaternions are a way
of representing the nine elements of a rotation matrix using four parameters.
They also avoid the singularities of gimbal lock [Challis, 2021]. This thesis
does not include a complete description of what quaternions are, or the
mathematical proofs behind them. It only includes the parts that are relevant
to describe a body’s orientation.

The full quaternion q̃ has four components: q0, q1, q2, and q3. The first
component q0 represent the ”scalar component”, while q1−3 represent the
”vector component”. Equation 2.6 shows a full quaternion [Haslwanter, 2018].

q̃ = q0 + (q1 ∗ ĩ+ q2 ∗ j̃ + q3 ∗ k̃) = q0 + q ∗ I (2.6)

To describe a pure rotation in 3D space, one can use a unit quaternion. This
is a quaternion with a norm of |q̃| = 1. It describes a rotation around a unit
vector n by the angle θ, as shown in equation 2.7. This unit quaternion has
the mathematical properties shown in equations 2.8a to 2.8d [Haslwanter,
2018].

q̃ = cos
θ

2
+ sin

θ

2
[ni ∗ ĩ+ nj ∗ j̃ + nk ∗ k̃] = q0 + q ∗ I (2.7)

q̃−1 = q0 − q ∗ I (2.8a)

|q̃| =
√
cos2

θ

2
+ sin2

θ

2
(2.8b)

|q| =
√
q21 + q22 + q23 = sin

θ

2
(2.8c)

q ||n (2.8d)

16

2.12 Quaternions

Using a unit quaternion, which describes a rotation, one can rotate a vector
v̄ with equation 2.9. As seen in the equation, the vector being rotated is
represented as a quaternion, but with a zero scalar component [Haslwanter,
2018]. The combination of rotations can be achieved by multiplying
quaternions, as equation 2.10 illustrates. The order of multiplication reflects
the sequence in which the rotations occur. The rightmost quaternion in
the equation represents the first rotation, while the leftmost quaternion
represents the final rotation. Consequently, quaternion multiplication is
not commutative. Changing the order of multiplication yields a different
combined rotation quaternion [Challis, 2021].

ṽ′ =

(
0
v̄′

)
= q̃ ◦ ṽ ◦ q̃−1 (2.9)

s̃ = r̃ ◦ q̃ (2.10)

In both equations 2.9 and 2.10, quaternion multiplication is performed. The
process for calculating the result of quaternion multiplication is demonstrated
in equation 2.11. It can also be expressed in matrix form, as shown in equation
2.12 [Challis, 2021].

q̃ ◦ r̃ = (q0r0 − q1r1 − q2r2 − q3r3)

+ ĩ(q0r1 + q1r0 + q2r3 − q3r2)

+ j̃(q0r3 + q2r0 + q3r1 − q1r3)

+ k̃(q0r3 + q3r0 + q1r2 − q2r1) (2.11)

q̃ ◦ r̃ =

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

r0
r1
r2
r3

 (2.12)

From a unit quaternion, describing a rotation, one can determine the angular
velocity using equation 2.13. The result of the equation, ω̃, is a pure
quaternion (0,ω), where ω is a vector that describes the angular velocity
with respect to 3D space. It provides the angular velocity around the x-, y-,
and z-axis for the rotation in rad

s . Since the angular velocity is no longer
represented as a quaternion, the angular acceleration is simply the derivative
of the angular velocity, as shown in equation 2.14 [Haslwanter, 2018].

ω̃ = 2 ∗ dq̃
dt

◦ q̃−1 (2.13)

α =
dω

dt
(2.14)

17

Chapter 2. Technical background

Quaternions can be interpolated similarly to vectors, but not in exactly the
same manner. For quaternions, one must consider their four-dimensional
nature, meaning each quaternion can be represented as a point on a
hyper-sphere. Consequently, any interpolation technique for quaternions
must accommodate the curvature of the hyper-sphere. One such method
is Spherical linear interpolation, also referred to as Slerp. This method
guarantees a consistent angular velocity between the two quaternions
[Challis, 2021].

The equation for the Slerp formula is depicted in equation 2.15. Its
components include q̃1,2, which are the quaternions being interpolated
between; θ, the angle between the quaternions; and f , the fraction of the
interval between the quaternions. An example of the interpolation between
two quaternions is illustrated in figure 2.8 [Challis, 2021].

q̃ =
sin ((1− f)θ)

sin θ
q̃1 +

sin (fθ)

sin θ
q̃2 (2.15)

Figure 2.8 Interpolation between two quaternions using Slerp [Challis, 2021]

18

3
Image stabilization
requirements

To evaluate the suitability of different stabilization systems, a set of criteria is
created. The criteria are based on information obtained during the literature
study and data gathered through experimentation. The aim is to establish and
quantify the movements affecting the body-worn camera.

3.1 Data gathering

To collect data about the movements of the body-worn camera, a data
gathering method is designed and set up. The goal of the method is to mimic
real-life use of the camera while ensuring ease of repetition. The basic idea
of the method is to attach a camera to a person who walks, jogs and runs on
a treadmill, and the movements of the camera are recorded.

Figure 3.1 Body-worn camera with sensor box attached

To attach the body-worn camera to a person, a camera holster (see figure
3.1) is used. This holster secures the camera in the middle of the wearer’s
chest. The holster is chosen to try and minimize unwanted movements caused
by an insufficiently secured camera.

19

Chapter 3. Image stabilization requirements

Figure 3.1 also show a blue sensor box attached to the camera. This is
the STEVAL-MKSBOX1V1 from STMicroelectronics, a wearable sensor
platform. It contains the necessary sensors together with an accompanying
app to record motion [STMicroelectronics, 2024b]. One of the pre-made
application can record the orientation of the box as quaternions.

The orientation of the box describes how the IMU’s coordinate system is
rotated in reference to a global coordinate system. As described in section
2.9, the IMU’s coordinate system is a body-fixed coordinate system. A sketch
of the IMU’s axes are shown in figure 3.2. Due to how the box is attached
to the camera, the z-axis points in the same direction as the camera lens,
and the x-axis points downwards. Referring back to the nautical sequence
from section 2.10 and figure 2.6, the yaw θ, pitch ϕ, and roll ψ are defined
as rotations around the x-, y- and z-axis, respectively.

Figure 3.2 The IMU’s coordinate axes

With the described setup, the wearer utilizes a treadmill, repeating the same
procedure at several different speeds. The three speeds used on the treadmill
are 3.0mph, 8.0mph, and 14.0mph (mph is used since it is the original unit
used by the treadmill). These correspond to a walking, jogging, and running
pace. For each pace the procedure starts with the wearer standing still for
20 seconds to obtain an accurate reading of the camera’s “home position”.
This is followed by 30 seconds of walking, jogging or running, after which the
gathering method is completed.

20

3.2 Data processing

3.2 Data processing

The gathered data is separated into the three different movement speeds.
For each of them, the data consists of a number of timestamps and an
associated quaternion. Each quaternion describes the rotation of the IMU’s
local coordinate system in relation to the earth’s global coordinate system,
at that current timestamp.

3.2.1 Quaternion data

As described in section 2.12, a quaternion consists of four parts. The collected
data can therefore be plotted as figures 3.3a, 3.3b, and 3.3c shows. All of them
illustrate how the four parts of the quaternion change over time during the
duration of the experiment. Any data from before 10 s is not included in the
graph, since unintended movements or sensor misreadings could occur at the
start of the experiment.

(a) Speed: 3.0mph (b) Speed: 8.0mph

(c) Speed: 14.0mph

Figure 3.3 Recorded quaternions for different speeds

21

Chapter 3. Image stabilization requirements

In these graphs, a larger difference is seen between the quaternions recorded
for 3.0mph and 8.0mph, compared to 8.0mph and 14.0mph. All three graphs
show the quaternions oscillating over time. This oscillation has a fairly stable
baseline for speed 3.0. As the speed increases to 8.0 and 14.0, the baseline
around which the quaternions oscillate becomes increasingly unstable and
start changing over time. The baseline of the quaternions indicate the average
direction the camera is facing. A stable baseline suggests that the camera is
pointing in the same average direction over the course of the experiment.
In contrast, a changing baseline implies that the average direction changes
over time. This variation could be due to the wearer leaning their upper
body in different directions when jogging or running, whereas they maintain
a steadier posture when walking.

3.2.2 Range of motion

Quaternions are not intuitive, so to better understand the data, the range
of motion of the STEVAL-MKSBOX1V1 is first calculated. As described in
section 2.12, unit quaternions are able to rotate any vector using equation 2.9.
By representing each of the coordinate axes of the STEVAL-MKSBOX1V1 as
a vector, they can be rotated using the recorded quaternion data. This process
produces a set of coordinate points for each axis, for all recorded quaternions.
These points represent the orientation of each coordinate axis over the
duration of the data gathering process. Plotting these sets of coordinate
points on a sphere results in the figures 3.4a, 3.4b, and 3.4c.

(a) Speed: 3.0mph (b) Speed: 8.0mph (c) Speed: 14.0mph

Figure 3.4 Range of motion for the coordinate axes at different speeds

22

3.2 Data processing

Each figure shows two spheres with three colored areas. Blue corresponds to
the coordinate points of the x-axis, red represent the y-axis, and green is the
z-axis. The size and shape of each colored area indicate the extent of motion
for each axis during the experiment. The areas are directly related to the
yaw, pitch and roll motions of the camera.

Recalling figures 3.1 and 3.2 from section 3.1, the z-axis points in the camera
lens’ direction, the y-axis points to the side of the camera, and the x-axis
points downward. The size of the green area thus shows the range of motion
for the yaw and pitch, the red area for the yaw and roll, and the blue area for
the pitch and roll. A larger yaw movement causes the green and red areas to
expand toward each other, a larger pitch movement expands the green and
blue areas toward each other, and a larger roll movement expands the read
and blue areas toward each other. It is clear, especially for 14.0mph, that
the green area is the largest area. This indicates that yaw and pitch rotations
are the main rotations affecting the camera. The elongated shapes of both
the red and blue areas further support this, since the smaller roll movement
results in less growth of the areas.

The spheres in figures 3.4 also show the increase in maximum and minimum
values for yaw, pitch and roll. The maximum and minimum values are
represented by the overall extent of each colored area. The figures show no
significant change in the maximum and minimum pitch between 8.0mph
and 14.0mph, as indicated by the green areas in figures 3.4b and 3.4c, both
stretching between a z-value of around−0.6 → +0.2. Comparing this to figure
3.4a, where the green area only stretches between around −0.3 → +0.05,
which is clearly a smaller area. In contrast the maximum and minimum
value of yaw increases for all three speeds. This result could further support
the change in behaviour noticed between walking, jogging and running in the
previous section (3.2.1). Since the maximum and minimum pitch does not
seem to change between 8mph and 14mph, it indicates that the wearer leans
the same amount of forward and backwards, when they jog and run.

3.2.3 Angular rotation, velocity, and acceleration calculations

To further clarify and quantify the movements of the body-worn camera, the
following parameters are calculated:

1. The rotation (yaw, pitch, and roll) over time around each of the IMU’s
axes (figure 3.2).

2. The angular velocity around each axis.

3. The angular acceleration around each axis.

23

Chapter 3. Image stabilization requirements

As section 2.12 show (specifically equations 2.13 and 2.14), the angular
velocity can be directly calculated from the quaternions, and the angular
acceleration is the derivative of the velocity. To simplify this process, the
quaternions are initially interpolated to be evenly distributed along the time
span. This is done by recalculating all timestamps to have uniform intervals.
The quaternion data is then interpolated using Slerp (see section 2.12 and
equation 2.15) to fit the new timestamps. After this, the angular velocity and
acceleration are calculated using equations 2.13 and 2.14. Both the angular
velocity and acceleration are assumed to reach their calculated values halfway
between the two data points. If the angular velocity ω is calculated between
the quaternions q̃1 and q̃2, it is assumed to be reached at the time t2+t1

2 ,
where t1,2 are the time points for quaternions q̃1,2. This same reasoning is
repeated for the angular acceleration, using the time points for the velocity.

As noted earlier, there is no definitive way to transform a quaternion into
rotational angles around the coordinate axes. One can use Euler angles or
the nautical sequence, but since they depend on the order of rotations,
they do not give a singular answer. Through testing it is found that
quaternions describing pure rotations around the x-, y-, and z-axis are not
always transformed into rotation angles around only the x-, y-, or z-axis. A
quaternion sequence describing a rotation around the x-axis followed by a
rotation around the z-axis could be transformed into a rotation around the
z-axis followed by the y-axis. Instead, the solution used in this thesis is to
look at the movement of each coordinate axis in the planes adjacent to it.
The sequence of calculations used is:

1. Calculate the average quaternion recorded during the standstill
(approximately between the time points 10 and 20 seconds) and save
as the ”home position”.

2. Rotate the x-, y-, and z-axis by each quaternion in the data set, to
get the IMU’s coordinate system’s new axes, in relation to the global
coordinate system.

3. Rotate the frame of reference to fit the ”home position’s” frame of
reference (a vector (1, 0, 0) in the global coordinate system, rotated by
the home position quaternion will become (1, 0, 0) in the new frame of
reference).

4. Mirror each vector into the two adjacent planes yielding two new vectors
(for example, the x-axis after rotation is mirrored in the xy- and zx-
plane).

24

3.2 Data processing

5. The angle of rotation around the plane’s normal is calculated between
the mirrored vector and the corresponding coordinate axis (if the
original vector was the rotated x-axis, the angle is measured against
the x-axis).

To summarize and give an example, one can look at what happens when the z-
axis is rotated by a quaternion q̃. Assuming that q̃ is not equal to the ”home
position” quaternion, the z-axis vector gets the new direction (z1, z2, z3)
after the rotation. This direction is in relation to the global axes, and after
rotating the frame of reference, the direction becomes z′ = (z′1, z

′
2, z

′
3) in the

”home position” frame. Now the z′ vector is mirrored into its adjacent planes
(yz and zx), yielding the two vectors (0, z′2, z

′
3) and (z′1, 0, z

′
3). For the first

mirrored vector, the angle of rotation around x-axis is acquired, and from
the second one, it is the angle around the y-axis. This process is repeated for
the two other axes yielding six total equations describing the three rotations.

In theory, the six equations can be separated into groups of two, where each
pair gives the same value for the rotation around the x-, y-, or z-axis. However
when these six equations are used on the recorded quaternion data, they
result in six unique values. This probably stems from rounding errors or
faults in the recorded data. For both the x- and y-axis, the error between
the two calculated values is less than one degree on average. For the z-axis,
the error is closer to 3 degrees at some points. To negate this difference the
average of the two calculated angles is used as a good enough approximation
of the actual value.

The results of the described calculations for angular rotation, velocity and
acceleration are shown in the following figures 3.5 to 3.7. Each graph
is color coded, with blue representing motions around the x-axis (yaw),
red representing motions around the y-axis (pitch), and green representing
motions around the z-axis (roll). For each color there are three graphs, one
for each speed used in the data gathering process. The graphs are presented
to give a visual understanding of the calculated data in this chapter.

25

Chapter 3. Image stabilization requirements

Figures 3.5a, 3.5b, and 3.5c show the relative stable oscillations for the
yaw motions of the body-worn camera. The same behaviour of the baseline
changing over time for 8.0mph and 14.0mph (as seen in figures 3.3a, 3.3b,
and 3.3c) is visible in these graphs.

(a) Speed: 3.0mph (b) Speed: 8.0mph

(c) Speed: 14.0mph

Figure 3.5 Result of calculations for yaw θ at different speeds

26

3.2 Data processing

Following the result for yaw, figures 3.6a, 3.6b, and 3.6c display the change
of pitch for the three different speeds. Compared to the results for yaw,
the oscillations for pitch are more erratic and have a less stable baseline.
A possible explanation for this difference is how the body-worn camera is
affected when the wearer takes a step. With the impact of each step the
body-worn camera will experience an added disturbance or small bounce,
which primarily acts on the pitch rotation.

(a) Speed: 3.0mph (b) Speed: 8.0mph

(c) Speed: 14.0mph

Figure 3.6 Result of calculations for pitch ψ at different speeds

27

Chapter 3. Image stabilization requirements

The final figures 3.7a, 3.7b, and 3.7c are the results of the roll calculations.
It is quite clear how small the roll rotations are compared to yaw and pitch,
even at 14.0mph. This indicates further the necessity to focus on the yaw
and pitch movements of the body-worn camera, since they most likely have
the largest impact on the record footage.

(a) Speed: 3.0mph (b) Speed: 8.0mph

(c) Speed: 14.0mph

Figure 3.7 Result of calculations for roll ϕ at different speeds

In summation, the calculation of the data was done separately for walking,
jogging and running. The recorded quaternions can be directly calculated into
angular velocity, which can then be differentiated into angular acceleration.
The rotation of the IMU’s coordinate system is used to calculate the angular
rotation around the x-, y-, and z-axis.

28

3.3 Data evaluation

3.3 Data evaluation

Based upon the result of the angular rotation, velocity, and acceleration
calculations, the maximum and minimum of each of them is estimated by
looking at figures 3.5a to 3.7c. These estimations are shown in table 3.1.

x-axis (Yaw θ) y-axis (Pitch ϕ) z-axis (Roll ψ)
Rotation γ (◦) −29 → +19 −13 → +33 −4 → +8
Velocity γ̇ (◦/s) −440 → +330 −300 → +350 −94 → +94

Acceleration γ̈ (rad/s2) −350 → +380 −429 → +345 −95 → +134

Table 3.1 Estimated maximum and minimum values

The values in the table indicate how much each axis is impacted by the
movement of the body-worn camera. Connecting it back to the nautical
sequence, θ spans almost 50◦, followed by ϕ with a span of around 45◦ and
finally ψ at 12◦. The table shows a significant gap between how much roll
movement there is compared to yaw and pitch. This gap between ψ, and θ
or ϕ stays consistent for both the angular velocity and acceleration and it is
also visible in the graphs in sections 3.2.2 and 3.2.3.

The results in table 3.1 also reinforces the findings of Samuel Bryngelsson and
Jonathan Gustafsson’s thesis, which suggested that the rotational movement
of the camera, especially yaw and pitch rotations, were the leading cause of
camera shake [Bryngelsson and Gustafsson, 2023].

θ ±30◦

θ̇ ±440◦/s

θ̈ ±380rad/s2

ϕ ±33◦

ϕ̇ ±350◦/s

ϕ̈ ±429rad/s2

ψ ±8◦

ψ̇ ±94◦/s

ψ̈ ±134rad/s2

Table 3.2 Calculated requirements

Using the worst case estimations of the data in table 3.1, the requirements
each solution needs to fulfill is set. They are displayed in table 3.2, and
represent the calculated requirements that a design has to fulfill in order to
be considered viable. In addition to these calculated requirements, the design
should also allow movement with three degrees of freedom. This allows the
effect of the yaw, pitch, and roll movements on stabilization to be evaluated.

29

4
Prototype design

Based on the requirements and criteria established in the previous chapter,
the next step is to conceptualize and design a prototype. This prototype must
be a 3 DOF capable solution to ensure stabilization along each rotational axis.
Each image stabilization system and prototype concept is evaluated on its own
merits. No consideration is taken to how two systems or concepts could be
combined in order to fulfill the requirements.

4.1 Choice of image stabilization system

With the set of requirements established in section 3.3, the different
stabilization methods explained in section 2.1 are evaluated against them.
Table 4.1 outlines some of the advantages and disadvantages of each image
stabilization system. These are based not only upon the information gathered
in section 2.1, but also from discussions with employees at the company.

Advantages Disadvantages

OIS • Maintains image quality
• Works well in low light
• Performs consistently
• Low impact on battery life

• Higher manufacturing cost
• Bulkier camera modules
• Hardware-dependent
• Mechanical components
• Low angle compensation

EIS • Cost-effective
• Compact design
• No moving parts
• Software based

• Lowered image quality
• Poor low-light performance
• Computational load
• Low angle compensation

MIS • High-quality stabilization
• Consistent performance
• Maintains image quality
• Works well in low light
• High angle compensation

• Requires calibration
• Higher manufacturing cost
• Bulkier system
• Hardware-dependent
• Mechanical components

Table 4.1 Comparison of Image Stabilization Techniques

30

4.1 Choice of image stabilization system

The key disadvantage of an OIS system for this project is its limited angle
compensation. As noted in section 2.1.1, current OIS systems on the market
offer motion correction angles of approximately one degree for small scale
cameras, such as those found in smartphones. Given that the proposed system
requires compensation of up to 30 degrees, implementing an OIS system is
inadequate.

The main drawbacks of an EIS system is also its limited angle compensation.
As described in section 2.1.2, the introduction of margins for each frame
negatively impact the final outcome. Enhancing the angle compensation
necessitates increasing these margins, which further compounds the issue.

Another significant drawback is the computational load required for real-
time stabilization, as demonstrated in Emil Manelius’ thesis Improving Image
Stabilization in Modern Surveillance Cameras. Manelius concludes that real-
time stabilization in surveillance cameras is not feasible due to the excessive
computational demands on current hardware, making it impractical within
the necessary time frame [Manelius, 2023].

Based upon these reasons, the most viable option at present is to develop
a MIS system. Although MIS systems can be bulky and require additional
components, they effectively address the maximum and minimum values in
table 3.2.

31

Chapter 4. Prototype design

4.2 Concept Generation & Selection

Initially, various conceptual MIS systems are sketched, each capable of
rotating an object around a single axis. Parallel to this, an external search is
conducted, involving an investigation of leading technologies and companies
in the field to gather inspiration. Figure 4.1 showcases some of the more
reasonable sketches. All of them are viable 1 DOF solutions.

Figure 4.1 MIS concept sketches (camera lens is denoted by ”water drop” shape)

The nine concepts showcased in the figure are evaluated and compared to
each other, and the set requirements. Below is a summary of this evaluation:

A: This concept involves using variable magnetic fields around the camera
module to rotate it. However, this approach poses a challenge since the
magnetic fields could interfere with other sensors and components in
the camera. To address this issue, magnetic shielding would need to be
added, which would increase the size and complexity of the solution.

32

4.2 Concept Generation & Selection

B: The idea for this concept is to use rotational motors to keep the camera
module stable and level despite external forces and movement. With
three motors mounted on the X, Y, and Z axes, the system enables
360-degree rotation along all axes, but it also increases the size and
power consumption of the system.

C: With this concept a translating linear motion is converted into a
circular motion using gears. The advantage is that less force has to
be applied by the actuator to keep the camera module stable, which in
turn means smaller actuators. However, the sketch is only of a 1 DOF
design, and how to implement this concept as a 3 DOF design poses
some difficulties. The linear actuators would have to rotate with the
camera module or perhaps be connected to it with some form of ball
joint. This could result in a overall larger system or be more complex
than just using rotational actuators.

D: The reasoning behind this concept is to use linear actuators at each
corner of the camera’s front to angle it correctly. A drawback with
this is the inability to compensate for rotational movements, making it
viable only as a 2 DOF design.

E: This concept relies on inertia, with the camera either placed in a fluid or
attached to springs. The idea is that the material absorbs and mitigates
the force from shakes and movement, slowing the reaction and making
the camera more stable. However, it quickly becomes apparent that
this approach is not viable due to the wide range of the unwanted
movements and the difficulty of finding the perfect inertia index for
such a broad range.

F: With this concept linear actuators, such as piezoelectric actuators, is
added in each corner. Each actuator moves up and down in tandem to
reach desired angles to stabilise the camera. This design keeps module
size within reasonable limits but only works as a 2 DOF system.

G: The idea behind this concept is to use rotational motors to rotate a
sphere on which the camera is attached. This can be implement into
a 3 DOF design. However, the sphere will most likely be subject to
significant wear and tear damage, since high friction is required between
the motors and the sphere to prevent slippage.

After evaluating the concepts, the two most promising are B and F. Since
concept F only works as a 2 DOF system, concept B is selected as the most
viable option.

33

Chapter 4. Prototype design

4.3 General system architecture

Based upon the sketch of the chosen concept, the components required for
building the prototype need to be identified. To do this a block diagram
is made, which shows the major components needed to control a motor in
response to external movements. Using both the chosen concept and the
block diagram in figure 4.2, the following list of necessary components is
established:

• Three motors to rotate the camera along each rotational axis.

• Three encoders to get position feedback from the motors.

• Three motor drivers to control each motor.

• A MCU to control the entire system.

• An IMU to measure the orientation of the system.

• A power supply to power the entire system.

• A camera to record the stabilized footage.

It should be noted that this is not a complete list of components required
to actually build the prototype. These are simply the most important ones,
which have a large impact on the design of the prototype.

Figure 4.2 Block diagram of the system

34

4.4 Component selection

4.4 Component selection

The main components used in the final prototype are listed in table 4.2.
Other components have been tested throughout the work on this thesis, but
are not necessary to discuss in this report. The choice of components have
been based upon capacity, availability, compatibility with the MCU and ease
of programming.

Component: Description:

STEVAL-GMBL02V1 Gimbal evaluation card

STM32F303RE MCU

STSPIN233 Motor driver

ICM-20948 Inertial measurement unit

ROB-20441 BLDC motor

AS5048A Magnetic encoder

COM-15208 Buck-Boost Converter

Table 4.2 List of main components

The STEVAL-GMBL02V1 serves as the main board, featuring the
STM32F303RE MCU and three STSPIN233 low voltage three-phase motor
drivers with integrated sense capabilities [STMicroelectronics, 2024a]. The
STEVAL-GMBL02V1 is refereed to as the MCU board throughout this
text. It is chosen due to it containing an “integrated environment for
three axis gimbal controller applications” as STMicroelectronics describes it
[STMicroelectronics, 2024a]. The necessary connections, resistors, capacitors,
etc. to program and control three gimbal motors are available on the board.

The ICM-20948 is a 9-axis IMU containing a gyroscope, accelerometer,
and magnetometer. It includes a digital motion processor that offloads
computation of motion processing algorithms from the host processor. This
minimizes power consumption and ensures optimal performance of the data
generated through sensor fusion [TDK InvenSense, 2017].

Three ROB-20411 BLDC motors are needed to rotate the camera around
all three axes. These are three-phase brushless gimbal stabilizer motors,
known for their high efficiency and torque. They operate smoothly and
are compatible with magnetic encoders, ensuring precise position detection
[sparkfun, 2024b]. The ROB-20411 also fulfills the angular velocity and
acceleration requirements set in table 3.2.

35

Chapter 4. Prototype design

Three AS5048A magnetic encoders determine the motor’s position. These
are 14-bit rotary position sensors based on contactless magnetic sensor
technology [ams OSRAM, 2024].

The COM-15208 is a buck-boost converter used to increase the voltage
received from the portable power supply [sparkfun, 2024a].

4.5 CAD models

Over the course of this project, the design of the prototype is changed in three
major iterations for development and improvement. The three iterations
mark significant redesigns, but between each iteration smaller redesigns occur
to make parts fit better together, or add missed features. For all CAD models,
the motor closest to the camera module is referred to as the innermost motor,
while the motor closest to the base of the prototype is referred to as the
outermost motor.

4.5.1 First iteration

Based on the selected components and concept B in sketch 4.1, a CAD model
is made in order to 3D print the prototype. Figure 4.3 displays the resulting
CAD model, showing both the assembled model (4.3a), and an exploded view
(4.3b). The dark grey objects in the figures represent the 3D printed parts
of the prototype. The figure also highlights the magnetic encoders in green,
the BLDC motors in white, and the camera module in light grey. All dark
grey objects are designed specifically for this project, while any other colored
object is based upon a manufactured component. Additionally, the camera
in this CAD model is an external camera, not the actual module used in the
body-worn camera.

(a) Assembled view of CAD model (b) Exploded view of CAD model

Figure 4.3 CAD model of the first iteration

36

4.5 CAD models

The main parts of the gimbal CAD model is a base platform, two identical
right angle arms, and a camera holder. The base platform and each arm
houses a magnetic encoder, and all three are connected together by the
motors. In this model the motors are numbered one to three starting with
the outermost motor and ending with the innermost. The MCU card and the
IMU is not visible in the CAD model, as they were kept separate from the
gimbal prototype at this stage.

After 3D printing and assembling the prototype, a big issue becomes
apparent. If the prototype is placed as shown in figure 4.3a, motor one and
three operate normally, but motor two struggles to rotate properly. This
happens because motor two has to work against the gravitational pull and
the torque added by the second gimbal arm. The added torque is primarily
due to the weight of motor three combined with the leverage arm’s length
between motor two and three.

Another potential issue discovered after assembly is the position of the
camera. The axes of rotation for the three motors do not intersect at a
common point, resulting in the camera lens being offset from this intersection.
A consequence of this is that the camera lens experiences both rotation and
translation, when the motors rotate. This is an issue when the kinematics of
the system are calculated, which is further explained in section 5.1.

4.5.2 Second iteration

After taking into consideration the problems discovered in the first iteration,
a second CAD model is made. It is shown in figure 4.4, and the same color
code from the first iteration is used. The new blue object is the MCU board
and the red object is the IMU. The camera module is also changed, to the
one present in the actual body-worn camera. Note that this second iteration
is only a 2 DOF system instead of a 3 DOF system like the first iteration.
This change is made in order to first implement the less complex 2 DOF
system and later add the third axis. With this change, the outermost motor
is now motor one, and the innermost motor is motor two.

With the smaller gimbal arm, less torque is required to rotate it, which in
turn makes it easier to control and actuate. This was tested by turning the
prototype on its side and checking if the motor two could overcome the added
torque due to gravity, which it could. It is now possible to effectively control
the motors no matter the orientation of the prototype, in contrast to iteration
one. The camera module is also placed so that the lens is positioned in the
intersection of the motors’ rotational axes. Another change from the first
iteration is that all of the components of the prototype are modeled and fit
inside of the prototype’s body.

37

Chapter 4. Prototype design

(a) Assembled view of CAD model (b) Exploded view of CAD model

Figure 4.4 CAD model of the second iteration

During testing of this model, it is discovered that it does not successfully
stabilize the camera module. Instead it possibly makes it more unstable.
The problem is once again connected to the weight of the motor and the
resulting torque. Specifically, the problem stems from where the center of
mass is placed. With the current design the center of mass is skewed towards
motor two, meaning that motor one’s rotational axis does not intersect with
it. The consequence of this is that motor one is subject to more torque, and
it is not powerful enough to hold against this added torque. As a result the
gimbal arm becomes unstable during movement, leading to an overall worse
stabilization than the original unstabilized body-worn camera.

4.5.3 Third iteration

The third and final iteration tries to solve the center of mass issue by
mirroring the gimbal arm, as figure 4.5 shows. The same color code of the
previous iteration is used for this model. The added motor is just there to
provide a counter weight to the gimbal arm and is not connected to the MCU
or controlled in any way. Therefore the motors are numbered the same way
as in iteration two.

38

4.5 CAD models

(a) Assembled view of CAD model (b) Exploded view of CAD model

Figure 4.5 CAD model of the third iteration

By adding the third motor, the gimbal arm is more balanced around motor
one’s rotational axis. The results of this are immediately apparent, when the
prototype is tested. Instead of worsening the stabilization, as iteration two
did, a clear improvement in stability is visible during testing. How the testing
is done is presented in section 6 and the results from it are shown in section
6.2. As this is the final iteration, there is no proposed design for how the
3 DOF solution should look. It is however clear that a re-design is needed
to make sure that each gimbal arm is balanced and that the center of mass
intersects with each motor’s rotational axis.

39

Chapter 4. Prototype design

4.6 Final Prototype design

The assembled final prototype design is shown in figure 4.6. All components
are connected and powered by a portable power supply. The main
components, such as the MCU and IMU, are housed inside of the body.
The camera module from the actual body-worn camera is fastened in the
center of the motors. The red component at the front is the buck-boost
converter, which increases the voltage received from the power supply.

Figure 4.6 Final prototype design

Reflecting on the concept choice made in section 4.2, a major reason for
selecting the initial concept was its capability to support a 3 DOF solution.
Since the proposed final design is a 2 DOF system, this initial decision should
be reevaluated. The chosen concept, optimized for 3 DOF, may not be the
most suitable for a 2 DOF system, and a different concept might be better
suited.

40

5
System Implementation

With the prototype assembled, a controller needs to be designed and
implemented, which responds correctly to outside disturbances. The sought
behaviour of the controller is to cancel out the movement of the body-worn
camera by rotating the camera module. To do this, the relation between the
rotation of the motors and the orientation of the camera module is needed.
It is also necessary to find how the camera module should be re-oriented in
order to correctly negate the movements of the camera body.

5.1 Kinematics

In order to design a proper controller, the kinematics of the system are
needed. The first step to find the kinematics is to define the coordinate
systems of the prototype. A conversion between the quaternions recorded
by the prototypes IMU and the corresponding motor angles are also needed
to define the controller’s objectives.

5.1.1 Coordinate systems

The three main parts of the prototype is the IMU sensor, the camera module,
and the body. Each of them have their own coordinate system, but since the
stabilization system only concerns rotation, the IMU’s coordinate system
can be merged with the body’s. The reason for this is that the IMU is
placed inside the body and moves with it, meaning any rotation impacts both
identically. Both the IMU’s and the camera module’s coordinate systems are
body-fixed (see section 2.9), and a third global coordinate system is required
as a reference. The most suitable global coordinate system is the earth’s,
which the IMU uses as a reference to estimate its orientation. In summary,
the three coordinate systems needed to describe the kinematics of the system
are:

• The earth’s coordinate system, referred to as the earth frame.

• The IMU’s coordinate system, referred to as the IMU frame.

• The camera module’s coordinate system, referred to as the CAM frame.

41

Chapter 5. System Implementation

The orientation of the IMU frame is dependent on the placement of the IMU
sensor in the prototype. This orientation is described in relation to the earth
frame by a quaternion Q̃. How the IMU frame is oriented in relation to the
prototype is shown in figure 5.1. It also shows the orientation of the CAM
frame, which has been chosen to simplify the kinematics later on.

Figure 5.1 Coordinate systems for the prototype

As stated earlier, the goal of the stabilization system is to counteract the
rotations acting on the prototype body by rotating the camera module.
However, not all rotations should be counteracted. To understand why, the
concept of the wearer’s forward direction is needed. It is the direction of the
entire person and is the same direction as the wearer’s chest is facing when
at standstill. Referring back to figure 5.1, the forward direction is equal to
the IMU frame’s x-axis when the wearer is not moving. It is important to
note that the forward direction is not fixed in regards to the earth frame. If
it were, the camera would continue to point south even if the wearer turned
east. Another way to define the forward direction is to see it as the wearer’s
overall heading.

42

5.1 Kinematics

With the forward direction established, the goal of the stabilization system is
to always point the camera module in this direction. As long as the forward
direction is constant, all rotations acting on the prototype are negated.
Then, when the forward direction changes, the stabilization system allows
the camera module to be rotated the same way the forward direction is
rotated.

To simplify the kinematics, the CAM frame is defined to be aligned with the
IMU frame when no rotations are acting on the prototype. They are therefore
aligned when both the camera module and the prototype body are pointing
in the forward direction. As figure 5.1 shows, the x-axis of the CAM frame
goes through the center of the camera lens, and the y-axis is aligned with the
closest motors rotational axis. Connecting this back to the nautical sequence
in section 2.10, yaw θ is the rotation around the z-axis, pitch ϕ is around
the y-axis, and roll ψ is around the x-axis for the CAM frame. The same
definition of θ, ϕ, and ψ is used for the IMU frame.

5.1.2 Conversion between quaternions and motor angles

For this section the gimbal prototype will be assumed to be a 3 DOF system
and therefore three motors are available to control the orientation of the
camera.

To figure out the relation between the motor angles and the orientation of
the CAM frame, the standard position of the prototype is first defined. This
position is when the CAM frame is aligned with the IMU frame, meaning
that all axes are pointing in the same direction. Refer to figure 5.1 for a visual
representation of the standard position. When the gimbal is in this position,
the rotations of the motors are consider to be zero. Another way to explain
it is that the standard position is the same position the camera would have
if there was no gimbal, and the camera module was fixed to the prototype
body.

In figure 5.2 the CAM and IMU frames are in the standard position, and
the three motors M1, M2, and M3 of the prototype are also visible. M1 is
the outermost motor, and M3 is the innermost motor. Using the definitions
for yaw, pitch and roll in section 5.1.1, the motor angle β1 of motor M1

corresponds to θ, β2 corresponds to ϕ, and β3 is ψ. Since β1,2,3 are directly
tied to θ, ϕ, and ψ, they can describe the orientation of the CAM frame using
the nautical sequence (section 2.10). Instead of the sequence yaw, pitch and
roll, the motor angle β1 followed by β2 and then β3 are used to describe the
orientation.

43

Chapter 5. System Implementation

Figure 5.2 IMU and CAM frame plus motor angles

Figure 5.2 also illustrates a quaternion Q̃, which represent a new orientation
of the CAM frame. As equation 2.10 in section 2.12 shows, any rotation
quaternion can be split into multiple consecutive quaternions to describe
the same rotation. The quaternion Q̃ can therefore be split into three
quaternions, see equation 5.1.

Q̃ = T̃ ◦ S̃ ◦ R̃ (5.1)

These three quaternions are then mapped to the nautical sequence and the
motor angles. The first rotation R̃ is equal to a rotation of motor M1, S̃ is a
rotation of M2 and T̃ is a rotation of M3. Recall that a rotation quaternion
can be described as a vector and a rotation, as shown in equation 2.7.
Applying this to the three quaternions R̃, S̃, and T̃ , each one is described
by the rotation angle β1,2,3 and the corresponding rotational axis of each
motor. Equations 5.2a, 5.2b, and 5.2c show this relation, where n̄1,2,3 are
the rotational axes of each motor M1,2,3.

R̃ = cos
β1
2

+ sin
β1
2
n̄1 (5.2a)

S̃ = cos
β2
2

+ sin
β2
2
n̄2 (5.2b)

T̃ = cos
β3
2

+ sin
β3
2
n̄3 (5.2c)

44

5.1 Kinematics

The next step is to define n̄1,2,3, which is done by referring back to figure

5.2. If the quaternion Q̃ represents a desired orientation of the CAM frame,
then the motors can be rotated according to the nautical sequence to reach
this orientation. The IMU and CAM frame are assumed to be in the standard
position at the start of the rotation Q̃, to simplify the calculations. As figure
5.2 show, M1 will rotate the CAM frame around the negative z-axis. M2 will
then rotate the frame around the once rotated negative y-axis, and finally
M3 will rotate around the twice rotated negative x-axis. The equations 5.2a,
5.2b, and 5.2c are then changed to:

R̃ = cos
β1
2

− sin
β1
2
z̄1 (5.3a)

S̃ = cos
β2
2

− sin
β2
2
ȳ2 (5.3b)

T̃ = cos
β3
2

− sin
β3
2
x̄3 (5.3c)

Since the CAM and IMU frames start in the standard position, the vectors
z̄1, ȳ2 and x̄3 are calculated with the following equations (see equation 2.9):

x̄1 = [1 0 0] (5.4a)

ȳ1 = [0 1 0] (5.4b)

z̄1 = [0 0 1] (5.4c)

ỹ2 = R̃ ◦ ỹ1 ◦ R̃−1 (5.4d)

x̃3 = S̃ ◦ x̃2 ◦ S̃−1 = S̃ ◦ R̃ ◦ x̃1 ◦ R̃−1 ◦ S̃−1 (5.4e)

Combining these equations with equations 5.3a, 5.3b, and 5.3c yields the
following results:

R̃ =

cos β1

2
0
0

− sin β1

2

 (5.5)

S̃ =

cos β2

2

−2 ∗ cos β1

2 ∗ sin β1

2 ∗ sin β2

2

− cos β1

2 sin β2

2
0

 (5.6)

T̃ =

cos β3

2

− cosβ1 ∗ cosβ2 ∗ sin β3

2

2 ∗ cos β1

2 sin β1

2 ∗ cosβ2 ∗ sin β3

2

−2 ∗ cos β2

2 sin β2

2 ∗ sin β3

2

 (5.7)

45

Chapter 5. System Implementation

Combining these results with equation 5.1 gives the relation between the
motor angles β1,2,3 and an orientation described by the quaternion Q̃:

Q̃ =

q0
q1
q2
q3

 =

cos β1

2 cos β2

2 ∗ cos β3

2 − sin β1

2 sin β2

2 ∗ sin β3

2

− cos β1

2 cos β2

2 ∗ sin β3

2 − sin β1

2 sin β2

2 ∗ cos β3

2

sin β1

2 cos β2

2 ∗ sin β3

2 − cos β1

2 sin β2

2 ∗ cos β3

2

− sin β1

2 cos β2

2 ∗ cos β3

2 − cos β1

2 sin β2

2 ∗ sin β3

2

 (5.8)

In summation, equation 5.8 is the relation between the three motor angles
β1,2,3 and the resulting orientation described by a quaternion Q̃. It assumes
that the start position of the IMU and CAM frame is the standard position,
meaning that if β1,2,3 = 0 then no rotation occurs and the gimbal remains in
the standard position.

5.1.3 Controller objective

The goal of the controller is to keep the camera module pointing in the
forward direction at all times. It does this by rotating the gimbal motors, thus
completely eliminating any unwanted rotations acting on the camera module.
The controller therefore needs the current orientation of the prototype as
an input and outputs the correct motor angles to keep the camera module
pointing forward. The current orientation is measured by the IMU as a
quaternion, but some assumptions and calculations are required to use this
quaternion in the controller.

Figure 5.3 IMU and CAM frame

46

5.1 Kinematics

If the gimbal is assumed to be in the standard position, any rotation of the
prototype can be described with the same quaternion Q̃ for both the IMU
and CAM frame. This is the case, because the frames are aligned as figure
5.3 shows. If Q̃ is an unwanted rotation it means that the motors should

rotate the camera module in the opposite direction of it (the direction Q̃
−1

).
Since the gimbal is in the standard position, equation 5.8 is applicable. A
simplification is however possible due to the prototype presented in section
4.5.3 is only a 2 DOF system, not a 3 DOF system as described by equation
5.8. The missing DOF is the result of the prototype not including motor M3

in its design, which means that β3 = 0 for all values of Q̃. This results in the
following equation:

Q̃ =

cos β1

2 cos β2

2

− sin β1

2 sin β2

2

− cos β1

2 sin β2

2

− sin β1

2 cos β2

2

 (5.9)

This equation assumes that the motor angles are known and the quaternion
is unknown, but for the controller the reverse is true. It knows the value of Q̃
based upon the readings from the IMU and wants to calculate the values for
β1,2,3. Equation 5.9 is possible to reverse, but it is important to note that Q̃
represents a 3 DOF rotation and the motor angle matrix represents a 2 DOF
system, with no control over the roll axis. The calculation of β1,2 is therefore

only reliant on the q2,3 parts of Q̃, since these two are needed to represent
either a pure yaw, or pitch rotation. Applying this to equation 5.9 yields:
q0
q1
q2
q3

 =

cos β1

2 cos β2

2

− sin β1

2 sin β2

2

− cos β1

2 sin β2

2

− sin β1

2 cos β2

2

 →

{
q3
q0

= − tan β1

2
q2
q0

= − tan β2

2

→

{
β1 = 2 ∗ arctan −q3

q0

β2 = 2 ∗ arctan −q2
q0

(5.10)

This equation also shows that the reverse unit quaternion Q̃−1 will result in
the same angles as Q̃, but with the opposite sign (β1,2 = −β1,2). Recall
equation 2.8a from section 2.12 for how a unit quaternion is inverted.
Furthermore, this equation allows the controller to use motor angles in its
control loop instead of quaternions. Note that the calculated motor angles
are always in relation to the standard position. Since the IMU bases its
orientation on the earth frame, the standard position is assumed to also be
aligned with the earth frame. Using equation 5.10 therefore yields the motor
angles required to orient the CAM frame, according to some quaternion Q̃,
in relation to the standard position.

The goal of the controller is to point the camera in the forward direction.
By using equation 5.10 both the current orientation of the prototype and the
forward position are saved as motor angles, for example α1,2 and γ1,2.

47

Chapter 5. System Implementation

Since both α1,2 and γ1,2 are in relation to the standard position, the difference
between these angles (γ1,2-α1,2) yields the motor angles that keep the camera
pointing in the forward direction. The basic steps of the controller are then:

1. Read the IMU and converted the recorded quaternion into motor
angles.

2. Calculate the difference between the forward position and the new
orientation.

3. Update the motors with the new reference angles.

4. Update the forward position if necessary.

The software implementation of the controller is discussed further in the next
section.

5.2 Software implementation

The complete control loop is implemented in the MCU using Arduino. The
code is available in the appendix, but an overview of it is given in this
section. The control loop is separated in two distinct parts: the motor angle
calculation (section 5.2.1), and the motor control algorithm (section 5.2.2).
The goal of the motor angle calculation is to find the reference values that
the motor control algorithm then uses.

5.2.1 Motor angle calculation

To control the motor, a reference motor angle βref is needed, and how this
angle is calculated by the software, is shown with a block diagram in figure
5.4.

Figure 5.4 Block diagram representing the motor angle calculation

48

5.2 Software implementation

The variables shown in the block diagram are:

• Q̃ - Unit quaternion measured by the IMU.

• βnew - Motor angles calculated from Q̃ using equation 5.10.

• βhome - Motor angles that represent the current forward position.

• βref - Motor angles that result in the camera module pointing forward.

Each block in the diagram represent a method in the program code, which
are:

• IMU - Method that communicates with the IMU and receives the
current orientation described as a quaternion.

• Transform - Receives the quaternion from the IMU and converts it
into motor angles using an implementation of equation 5.10.

• Filter - Uses the values of the current orientation βnew and the current
forward position βhome to dynamically update the forward position over
time.

• Limiter - Limits the calculated difference between βhome and βnew to
ensure the result is within expected values.

In the filter method both βhome and βnew are used to dynamically update
βhome. The current βhome are the motor angles that represent the quaternion,
which describes the current forward position. To update the forward position,
the filter method uses a moving average and a complementary filter. With
the moving average the fifty latest βnew values are averaged, which show if
a change in the forward position is occurring. In order to not update the
forward position to often and to quickly, the complementary filter is used. It
simply updates the forward position with the following equation:

βhome = 0.1 ∗ βnew + 0.9 ∗ βhome (5.11)

The values of 0.1 and 0.9 are chosen by experimentation and represent how
much weight βnew and βhome are given when the forward position is updated.
Increasing the weight of βnew result in the forward position updating more
frequently, but also being more sensitive to small changes of βnew.

49

Chapter 5. System Implementation

As a protective measure the limiter block is added to the motor angle
calculation. It limits βref to be between ±45◦, which makes sure that no
destructive movements are made by the gimbal motors. This limit is bigger
than the estimated rotation requirement set in section 3.3, so it does not
interfere with the stabilization of the gimbal system.

5.2.2 Motor control algorithm

To control the motors using the reference motor angle, a control algorithm
is implemented in the MCU. Figure 5.5 provides an overview of the control
loop used in this project, which is a software implementation of the FOC
algorithm. The outermost loop (orange), called position motion control,
employs a standard PID regulator with an added velocity limit. It receives the
desired angle from the motor angle calculation in section 5.2.1 and subtracts
the current motor position angle obtained from the magnetic encoder. The
resulting error angle passes through the PID and velocity limit, converting it
into the desired velocity. The desired velocity is then processed in the velocity
motion control loop (yellow), undergoing a similar process to produce the
target current.

Figure 5.5 Overview of a standard control loop utilizing the Field-Oriented
Control method [Skuric et al., 2022]

As described in section 2.8, to maximize generated torque and maintain it
steadily, the stator magnetic field must remain 90 degrees ahead of the rotor’s
magnetic field. The innermost loop (blue), called the torque control, achieves
this using FOC. In this loop, the phase currents (ia, ib, ic) are converted
into direct and quadrature currents (id, iq) through inverse Clark and Park
transformation. The direct current is forced to zero while the quadrature
current is compared with the target current to determine the error current.
This error current then passes through a PID regulator and a voltage limit to
produce one of the two-phase voltages. The two-phase time-invariant voltages
(ud, uq) are converted back into three-phase time-variant voltages (ua, ub,
uc) via Clark and Park transformation. Finally, the three-phase voltages are
sent to the motor drivers.

50

5.2 Software implementation

The PIDs in the control loop are tuned manually, starting with the innermost
loop. Each PID is tuned by looking at the step response of the motors
and achieving a fast response time with little oscillation. First only the
proportional part is tuned to a satisfactory degree, with the integral added
after and the derivative part added last. When each part of the PID is
added the previously added parts are tweaked again to achieve a better step
response. After the innermost loop is tuned to satisfied degree, the next loop
is added and the process is repeated.

51

6
Final evaluation

The final evaluation of the system involves conducting real-life tests with the
prototype. The gimbal prototype attaches to a functioning body-worn camera,
using its camera module to gather footage. This footage helps visualize the
performance of the prototype. Additionally, the performance is compared with
a commercially available gimbal product.

6.1 Evaluation setup

The entire prototype plus body-worn camera system is fastened to a person
using the same holster as described in section 3.1. This is shown in figure 6.1
and the setup is used to try and mimic real-life use of the body-worn camera.

Figure 6.1 Prototype attached to wearer’s chest

With the system fastened, videos are recorded as the wearer approaches a red
object with the gimbal both activated and deactivated. The recordings take
place outdoors in well-lit conditions, capturing footage of both walking and
running towards the object. A snapshot of the recorded footage is displayed
in figure 6.2, showing the beginning of a recording with the red object visible.

52

6.1 Evaluation setup

After recording, a video editing program is used to track the red object’s
deviation from its starting point in the first frame. By tracing the path of
the object, the overall deviation in the footage is visualized, providing a
clearer and better understanding of the recording’s shakiness. The resulting
traced paths are presented in the next section (6.2).

Figure 6.2 Snapshot from recorded footage

The setup for the final evaluation differs from the setup used during the data
gathering process. This stems from difficulties with recordings done on the
treadmill. A majority of the footage captured on the treadmill is obscured by
a screen, which is a part of the treadmill. Any object placed in the center of
the camera frame therefore has to be placed in front of this screen to be visible
in the recording. This places the object at a distance of less than one meter
away from the wearer. The short distance does not accurately reflect real-life
use of the body-worn camera and could skew the final evaluation. Using the
data gathering setup was therefore deemed to not give an accurate reflection
of real-life use of the body-worn camera and the prototype is instead tested
outside. A consequence of this decision is that the exact speeds used on the
treadmill cannot be replicated.

53

Chapter 6. Final evaluation

6.2 Evaluation results

The results from the final evaluation of the prototype are presented in figures
6.3 and 6.4. They show the use of the final prototype in two predefined test
cases (walking and running) with and without the image stabilization system
activated. In the figures, the black line represents the movement patterns of
the tracked object captured in the videos. This movement pattern is a result
of vibrations and rotations that occur during walking and running. Figure
6.3 displays the results of walking with the stabilization system activated
and deactivated, while figure 6.4 shows the results for running with the same
setup. It is important to note that the motors are made rigid when the
stabilization system is deactivated. The motors are therefore not allowed
to rotate freely, which ensures a similar behaviour as wearing the normal
non stabilized body-worn camera. This result in a more accurate comparison
between the constructed prototype and the actual body-worn camera.

(a) Without stabilization (b) With stabilization

Figure 6.3 Tracking the movement while walking

In addition to testing the prototype, a commercially available gimbal camera
is also evaluated using the previously described final evaluation method.
Although this gimbal camera is designed as a handheld device, it features
a camera module and lens of similar size to the prototype. By fastening the
gimbal camera to the same holster used with the prototype, it simulates how
the commercially available gimbal could act as a body-worn camera. The
results of these tests are found in figure 6.5, with the black line once again
representing the movement pattern of the red object.

54

6.2 Evaluation results

(a) Without stabilization (b) With stabilization

Figure 6.4 Tracking the movement while running

(a) Walking (b) Running

Figure 6.5 Tracking the movement of a commercially available gimbal camera

55

Chapter 6. Final evaluation

6.3 Evaluation discussion

The results from the final evaluation tests show overall improved stabilization
using either the prototype or the commercially available gimbal. Starting by
only looking at the prototype’s performance, the most improvement is seen
while running (figure 6.4). Quite clearly the area of the black line is smaller
in both the vertical and horizontal direction. This indicates an improvement
in the reduction of yaw and pitch rotations acting on the camera module.
In figure 6.3, where the test is conducted while walking, the horizontal
stabilization is improved while the vertical stabilization does not show similar
progress.

A significant reason for the vertical movement is the impact of each step the
wearer takes. When the feet hit the ground, major vibrations occur due to
the sudden change in speed and direction. This primarily affects the pitch
rotation. In the stabilized system, the camera module is movable which makes
it more receptive to these disturbances. This is because its inertia is lower
than the inertia of the fixed camera module, making it easier to move. The
worse stabilization in the vertical direction when walking is likely due to
the low inertia of the camera module combined with an incorrectly tuned
controller for the innermost motor. The controller needs to be more sensitive
and faster to correct the smaller more rapid disturbances affecting the camera
module due to its lower inertia. A more sensitive controller is however more
likely to be unstable or react to noise in the system, which takes time to
correctly tune.

The stabilized footage is also more centered during both walking and
running. It is especially clear in figure 6.4. The black path is more compact
and centered in the frame. It has also removed the upside-down u-shaped
form seen in the unstabilized footage. This improvement demonstrates the
effectiveness of the dynamic home position implemented in section 5.2.1 and
the ability of the controller to maintain a forward-pointing orientation.

Comparing the result of the constructed prototype with the commercially
available gimbal shows a vast improvement, with the gimbal providing
even better stabilized footage. This further supports the achievability and
importance of implementing a MIS system to eliminate disturbances and
vibrations acting on the body-worn camera. It is primarily with the vertical
stabilization that the gimbal outperforms the prototype, indicating again
the need to improve the controller for the pitch motor. Another interesting
observation is the presence of the upside-down u-shape in the footage from
the commercially available gimbal.

56

7
Conclusions

7.1 General

In conclusion, the thesis has successfully designed, assembled and evaluated
an image stabilization system for a body-worn camera. The final system
presented makes noticeable improvements in the stability of the captured
footage, proving that the chosen concept works for its intended use. The
viability of using a MIS system is furthered supported by the evidence
gathered with the commercially available gimbal.

A notable undeveloped feature of the prototype is the third axis of rotation,
which meant that all three axes could not be stabilized simultaneously.
It remains unclear how big of an impact stabilization of all three axes
have compared to stabilizing only two axes. Although the commercially
available gimbal is a 3 DOF system compared to the prototype’s 2 DOF,
it is hard to draw any conclusion of the impact this extra DOF has on
the stabilization. There are too many unknown differences between the
gimbal and the prototype to clearly determine if the gimbal outperforms
the prototype due too its extra DOF.

Alongside the constructed prototype, the rotational motions affecting the
body-worn camera during use have been studied and quantified. This was
accomplished through both a literature study and experimentation, which
can hopefully aid future developments in this area.

7.2 Further work

To further improve the stabilization system, some areas of improvement have
been identified. One potential improvement is to add the third rotational
axle as intended. This would add compensation for disturbances in the roll
angle. While the roll angle, as described before, has the least impact on
the stabilization it still influences the system, making this addition worth
considering.

57

Chapter 7. Conclusions

Another major improvement would be to thoroughly tune the PID settings
for the entire system. Since there are four PID-regulators in the system,
each with three parameters, a lot of interdependencies exist between them.
A possible solution is to create a simulation of the system to more easily test
all possible parameter combinations. The optimal values identified in the
simulation can then be used as guidelines for real-world testing and tuning.

An important component of a gimbal system is its motors. For optimal
stabilization, the motors need to be custom-made for the specific build. In
this project, there is room for improvement since the motors used are off-
the-shelf solutions and not specifically designed for this prototype. Another
potential enhancement, which has not been tested, involves adding a second
IMU on the camera module. This additional IMU would collect data on the
camera module’s specific movements and could be used to compensate for
vibrations occurring specifically on the module.

Another improvement not explored in this work is to combine different
stabilization systems for better performance. For example, a MIS system
could take care of larger and slower disturbances, while either an OIS or EIS
system could address the smaller and faster vibrations. This hybrid approach
would optimize stabilization by leveraging the strengths of each system and
potentially help counter each systems’ weaknesses.

58

Bibliography

ams OSRAM (2024). ams AS5048A High-Resolution Position Sensor.
Available at: https://ams- osram.com/products/sensors/
position - sensors / ams - as5048a - high - resolution -
position-sensor. (accessed on 2024-05-30).

Ardakani, H. A. and Bridges, T. J. (2010). Review of the 3-2-1 Euler Angles:
a yaw–pitch–roll sequence. University of Surrey.

Bryngelsson, S. and Gustafsson, J. (2023). Image Stabilization for Body-
Worn Cameras. Master’s Thesis. Lund University.

Challis, J. H. (2021). Experimental Methods in Biomechanics. Springer,
Cham.

Doe, J. (2024). What Is a Gimbal? Everything You Want to Know. Available
at: https://www.hollyland.com/blog/tips/what-is-a-
gimbal. (accessed on 2024-05-22).

EDN (2010). Hardware-controlled brushless dc motors ease the burden
on CPUs. Available at: https : / / www . edn . com / hardware -
controlled-brushless-dc-motors-ease-the-burden-on-
cpus/. (accessed on 2024-04-29).

Electrical4U (2024). What is Field Oriented Control? Available at: https:
/ / www . electrical4u . com / field - oriented - control/.
(accessed on 2024-05-10).

Electricity & Magnetism (2024). Magnetometers. Available at: https://
www.electricity-magnetism.org/magnetometers/. (accessed
on 2024-02-22).

Ericco Inertial System (2023). What’s the advantages and disadvantages
of MEMS gyroscope? Available at: https : / / www .
ericcointernational . com / application / whats - the -
advantages-and-disadvantages-of-mems-gyroscope.html.
(accessed on 2024-02-14).

Flores, P. (2015). Concepts and Formulations for Spatial Multibody
Dynamics. Springer, Cham.

59

https://ams-osram.com/products/sensors/position-sensors/ams-as5048a-high-resolution-position-sensor
https://ams-osram.com/products/sensors/position-sensors/ams-as5048a-high-resolution-position-sensor
https://ams-osram.com/products/sensors/position-sensors/ams-as5048a-high-resolution-position-sensor
https://www.hollyland.com/blog/tips/what-is-a-gimbal
https://www.hollyland.com/blog/tips/what-is-a-gimbal
https://www.edn.com/hardware-controlled-brushless-dc-motors-ease-the-burden-on-cpus/
https://www.edn.com/hardware-controlled-brushless-dc-motors-ease-the-burden-on-cpus/
https://www.edn.com/hardware-controlled-brushless-dc-motors-ease-the-burden-on-cpus/
https://www.electrical4u.com/field-oriented-control/
https://www.electrical4u.com/field-oriented-control/
https://www.electricity-magnetism.org/magnetometers/
https://www.electricity-magnetism.org/magnetometers/
https://www.ericcointernational.com/application/whats-the-advantages-and-disadvantages-of-mems-gyroscope.html
https://www.ericcointernational.com/application/whats-the-advantages-and-disadvantages-of-mems-gyroscope.html
https://www.ericcointernational.com/application/whats-the-advantages-and-disadvantages-of-mems-gyroscope.html

Bibliography

Golik, B. (2006). Development of a Test Method for Image Stabilizing
Systems. Diploma Thesis. University of Cologne.

Goodwin, D. (2023). Field-oriented Control (Vector Control) for Brushless
DC Motors. Available at: https://control.com/technical-
articles/field-oriented-control-vector-control-for-
brushless-dc-motors/. (accessed on 2024-05-13).

Gunasekaran, B. (2019). IMU Sensors: Everything You Need To Know!
Available at: https://embeddedinventor.com/what-is-an-
imu-sensor-a-complete-guide-for-beginners/. (accessed on
2024-02-26).

Hansen, S. (2023). Large angle OIS compensation with SMA camera products.
Available at: https://www.cambridgemechatronics.com/en/
news/resources-blogs/large-angle-ois-compensation-
sma-camera-products/. (accessed on 2024-03-07).

Haslwanter, T. (2018). 3D Kinematics. Springer, Cham.

Hytera (2023). VM780 Body Camera. Available at: https : / / www .
hytera.com/en/product- new/body- worn- camera/body-
worn-camera/vm780.html. (accessed on 2024-06-05).

Jenish, C. (2023). Performance Analysis of BLDC Motors and its Various
Control Strategies.

Manelius, E. (2023). Improving Image Stabilization in Modern Surveillance
Cameras. Master’s Thesis. Lund University.

Nicholson, A. and Summersby, A. (2024). Image Stabilisation. Available
at: https : / / www . canon . se / pro / infobank / image -
stabilisation-lenses/. (accessed on 2024-05-22).

Omega Engineering (n.d.). How to Measure Acceleration? Available at:
https://www.omega.com/en-us/resources/accelerometers.
(accessed on 2024-02-21).

Ordro (n.d.). New ORDRO EP8 FPV Wearable Action 4K POV Camcorder
Vlog Camera for Youtuber Cam. Available at: https : / / ordro .
online / products / camcamcorder - ep8 ? _pos = 2 & _sid =
ed65c1f6c&_ss=r. (accessed on 2024-06-05).

Passaro, V. M. N., Cuccovillo, A., Vaiani, L., De Carlo, M., and Campanella,
C. E. (2017). Gyroscope Technology and Applications: A Review in the
Industrial Perspective. Available at: https://doi.org/10.3390/
s17102284. (accessed on 2024-02-12).

ROHM Semiconductor (2013). Optical Image Stabilization (OIS).

Rosa, F. L., Virzi, M. C., Bonaccorso, F., and Branciforte, M. (n.d.). Optical
Image Stabilization (OIS). STMicroelectronics.

60

https://control.com/technical-articles/field-oriented-control-vector-control-for-brushless-dc-motors/
https://control.com/technical-articles/field-oriented-control-vector-control-for-brushless-dc-motors/
https://control.com/technical-articles/field-oriented-control-vector-control-for-brushless-dc-motors/
https://embeddedinventor.com/what-is-an-imu-sensor-a-complete-guide-for-beginners/
https://embeddedinventor.com/what-is-an-imu-sensor-a-complete-guide-for-beginners/
https://www.cambridgemechatronics.com/en/news/resources-blogs/large-angle-ois-compensation-sma-camera-products/
https://www.cambridgemechatronics.com/en/news/resources-blogs/large-angle-ois-compensation-sma-camera-products/
https://www.cambridgemechatronics.com/en/news/resources-blogs/large-angle-ois-compensation-sma-camera-products/
https://www.hytera.com/en/product-new/body-worn-camera/body-worn-camera/vm780.html
https://www.hytera.com/en/product-new/body-worn-camera/body-worn-camera/vm780.html
https://www.hytera.com/en/product-new/body-worn-camera/body-worn-camera/vm780.html
https://www.canon.se/pro/infobank/image-stabilisation-lenses/
https://www.canon.se/pro/infobank/image-stabilisation-lenses/
https://www.omega.com/en-us/resources/accelerometers
https://ordro.online/products/camcamcorder-ep8?_pos=2&_sid=ed65c1f6c&_ss=r
https://ordro.online/products/camcamcorder-ep8?_pos=2&_sid=ed65c1f6c&_ss=r
https://ordro.online/products/camcamcorder-ep8?_pos=2&_sid=ed65c1f6c&_ss=r
https://doi.org/10.3390/s17102284
https://doi.org/10.3390/s17102284

Bibliography

Skuric, A., Bank, H. S., Unger, R., Williams, O., and González-Reyes,
D. (2022). SimpleFOC: A Field Oriented Control (FOC) Library for
Controlling Brushless Direct Current (BLDC) and Stepper Motors.
Available at: https://doi.org/10.21105/joss.04232. (accessed
on 2024-04-26).

Souza, M. R. and Pedrini, H. (2018). Digital video stabilization based on
adaptive camera trajectory smoothing. Available at: https://doi.
org/10.1186/s13640-018-0277-7. (accessed on 2024-02-01).

sparkfun (2024a). SparkFun Buck-Boost Converter. Available at: https:
//www.sparkfun.com/products/15208. (accessed on 2024-06-03).

sparkfun (2024b). Three Phase Brushless Gimbal Stabilizer Motor. Available
at: https://www.sparkfun.com/products/20441. (accessed on
2024-05-30).

STMicroelectronics (2024a). STEVAL-GMBL02V1. Available at: https://
www.st.com/en/evaluation-tools/steval-gmbl02v1.html.
(accessed on 2024-05-29).

STMicroelectronics (2024b). STEVAL-MKSBOX1V1. Available at: https:
//www.st.com/en/evaluation-tools/steval-mksbox1v1.
html. (accessed on 2024-05-22).

Strout, Z. (2023). How Does IMU Sensor Fusion Work? Available at:
https://www.sagemotion.com/blog/how-does-imu-sensor-
fusion-work. (accessed on 2024-04-23).

TDK InvenSense (2017). ICM-20948. Available at: https : / / cdn .
sparkfun.com/assets/7/f/e/c/d/DS-000189-ICM-20948-
v1.3.pdf. (accessed on 2024-05-30).

Ulusoy, M. (2020). Understanding Field-Oriented Control — Motor Control,
Part 4. Available at: https : / / se . mathworks . com / videos /
motor-control-part-4-understanding-field-oriented-
control-1587967749983.html. (accessed on 2024-05-13).

61

https://doi.org/10.21105/joss.04232
https://doi.org/10.1186/s13640-018-0277-7
https://doi.org/10.1186/s13640-018-0277-7
https://www.sparkfun.com/products/15208
https://www.sparkfun.com/products/15208
https://www.sparkfun.com/products/20441
https://www.st.com/en/evaluation-tools/steval-gmbl02v1.html
https://www.st.com/en/evaluation-tools/steval-gmbl02v1.html
https://www.st.com/en/evaluation-tools/steval-mksbox1v1.html
https://www.st.com/en/evaluation-tools/steval-mksbox1v1.html
https://www.st.com/en/evaluation-tools/steval-mksbox1v1.html
https://www.sagemotion.com/blog/how-does-imu-sensor-fusion-work
https://www.sagemotion.com/blog/how-does-imu-sensor-fusion-work
https://cdn.sparkfun.com/assets/7/f/e/c/d/DS-000189-ICM-20948-v1.3.pdf
https://cdn.sparkfun.com/assets/7/f/e/c/d/DS-000189-ICM-20948-v1.3.pdf
https://cdn.sparkfun.com/assets/7/f/e/c/d/DS-000189-ICM-20948-v1.3.pdf
https://se.mathworks.com/videos/motor-control-part-4-understanding-field-oriented-control-1587967749983.html
https://se.mathworks.com/videos/motor-control-part-4-understanding-field-oriented-control-1587967749983.html
https://se.mathworks.com/videos/motor-control-part-4-understanding-field-oriented-control-1587967749983.html

A
MATLAB code

Three main scripts are used throughout this work to process the data
gathered, and help with calculations and plotting of graphs. Each script is
presented in a separate subsection.

A.1 QuaternionAngles

This code reads the collected quaternion data in each excel file and plots the
graphs for:

• Recorded quaternions over time

• Angular rotation around each axis over time

• Angular velocity around each axis over time

• Angular acceleration around each axis over time

The code is used to produce the graphs 3.3a to 3.3c, and 3.5a to 3.7c in
section 3.2.

%Star t o f Code
c l c
c l e a r
c l o s e a l l

%Names o f each Excel f i l e conta in ing quatern ion data
FileNames = [” Speed3 ” ,” Speed8 ” ,” Speed14 ”] ;
f o r k = 1 : l ength (FileNames)

% Def ine the f i l e paths
Fi lePath = ”C:\ Users\ jakob\Documents\MATLAB\Thes is \” + FileNames (k) +

” . x l sx ” ; % Add more f i l e paths as needed

% Import data from the Excel f i l e
Data = readtab l e (Fi lePath) ;

% Get unique time va lues
[temp , I nd i c e s] = unique (Data . Time) ;
UniqueData = Data (Ind i ce s , :) ;
Time = temp/1000;

% Calcu la te quatern ion
Quaternions = ca l cu la teQuate rn ion (UniqueData , [” qs ” ,” q i ” ,” q j ” ,” qk ”]) ;
% Create a new time vector with r egu l a r i n t e r v a l s
NewTime = l i n spa c e (min (Time) , max(Time) , l ength (Time)) ' ;

62

A.1 QuaternionAngles

% I n i t i a l i z e array f o r i n t e rpo l a t ed quatern ions
NewQuaternions = quatern ion . z e ro s (s i z e (NewTime)) ;

% Loop over each new time point
idx = 1 ;
f o r i = 1 : l ength (NewTime)

%Find the next o r i g i n a l time point that i s l a r g e r than NewTime(i)
whi le Time(idx+1) < NewTime(i)

idx = idx + 1 ;
end
% I f the new time point i s exac t l y equal to an o r i g i n a l time point ,

use the o r i g i n a l quatern ion
i f NewTime(i) == Time(idx)

NewQuaternions (i) = Quaternions (idx) ;
e l s e

% Otherwise , i n t e r p o l a t e between the two o r i g i n a l quatern ions
t = (NewTime(i) − Time(idx)) / (Time(idx+1) − Time(idx)) ;
NewQuaternions (i) = s l e r p (Quaternions (idx) , Quaternions (idx+1) ,

t) ;
end

end
Quaternions = NewQuaternions ;
Time = NewTime ;

%Find the mean ro t a t i on during the s t a r t to get the home po s i t i o n
I nd i c eS t a r t i n gPo s i t i o n = f ind (Time > 5 & Time < 15) ;
Quatern ionsStart = Quaternions (min (I nd i c eS t a r t i n gPo s i t i o n) :max(

I nd i c eS t a r t i n gPo s i t i o n)) ;
QuaternionHome = meanrot (Quatern ionsStart) ;

x = [1 0 0] ;
y = [0 1 0] ;
z = [0 0 1] ;

%Find the coo rd ina t e s f o r the three ax i s o f the home po s i t i o n in the
g l oba l

%coord inate system .
PointHomeX = ro ta t epo in t (QuaternionHome , x) ;
PointHomeY = ro ta t epo in t (QuaternionHome , y) ;
PointHomeZ = ro ta t epo in t (QuaternionHome , z) ;

%Rotate the point by each recorded quaternion , and get the new
coo rd ina t e s

%in the g l oba l system
PointsRotatedX = ro ta t epo in t (Quaternions , x) ;
PointsRotatedY = ro ta t epo in t (Quaternions , y) ;
PointsRotatedZ = ro ta t epo in t (Quaternions , z) ;

%Change the frame o f r e f e r e n c e to be the home po s i t i o n and get the
%coo rd ina t e s f o r each rotated point .
PointsHomeX = rotate f rame (QuaternionHome , PointsRotatedX) ;
PointsHomeY = rotate f rame (QuaternionHome , PointsRotatedY) ;
PointsHomeZ = rotate f rame (QuaternionHome , PointsRotatedZ) ;

%Calcu la te the yaw , pitch , and r o l l ang l e s . Yaw ro ta t i on around x ,
p i t ch

%ro ta t i on around y , r o l l r o t a t i on around z .
Yaw = zero s (l ength (PointsHomeX) ,2) ;
Pitch = ze ro s (l ength (PointsHomeY) ,2) ;
Rol l = ze ro s (l ength (PointsHomeZ) ,2) ;
f o r n = 1 : l ength (PointsHomeX)

%Calcu la te the ang l e s between the x−ax i s and the po in t s in the xz−
and

%xy−plane
Pitch (n , 1) = vectorAngle (x , [PointsHomeX(n , 1) ,0 , PointsHomeX(n , 3)] , y)

;
Rol l (n , 1) = vectorAngle (x , [PointsHomeX(n , 1) ,PointsHomeX(n , 2) , 0] , z) ;

%Calcu la te the ang l e s between the y−ax i s and the po in t s in the xy−
and

%yz−plane
Yaw(n , 1) = vectorAngle (y , [0 , PointsHomeY(n , 2) ,PointsHomeY(n , 3)] , x) ;
Rol l (n , 2) = vectorAngle (y , [PointsHomeY(n , 1) ,PointsHomeY(n , 2) , 0] , z) ;

63

Appendix A. MATLAB code

%Calcu la te the ang l e s between the z−ax i s and the po in t s in the yz−
and

%zx−plane
Yaw(n , 2) = vectorAngle (z , [0 , PointsHomeZ (n , 2) , PointsHomeZ (n , 3)] , x) ;
Pitch (n , 2) = vectorAngle (z , [PointsHomeZ (n , 1) ,0 , PointsHomeZ (n , 3)] , y)

;
end
Angles = [(Yaw(: , 1)+Yaw(: , 2)) /2 (Pitch (: , 1)+Pitch (: , 2)) /2 (Rol l (: , 1)+

Rol l (: , 2)) / 2] ;

[AngVel , VelMidPoints] = ang l eVe lo c i ty (Quaternions , Time) ;
[AngAcc , AccMidPoints] = ang l eAcce l e r a t i on (AngVel , VelMidPoints) ;
TimeTot = [Time , VelMidPoints , AccMidPoints] ;
AngAcc = AngAcc∗ pi /180 ;

plotRotVelAcc (Angles , AngVel , AngAcc , TimeTot , FileNames (k)) ;
p lotQuaternion (Quaternions , Time , FileNames (k)) ;

end

% Function to c a l c u l a t e quatern ion
func t i on Q = ca l cu la teQuate rn ion (data , inputVar iab l e s)
temp = rowfun(@quaternion , data , ” InputVar iab le s ” , inputVar iab les , ”

OutputVariableNames ” , ”q”) ;
Q = temp { : , ” q ”} ;
Q = normal ize (Q) ;
end

%Function to c a c l u l a t e the angle between two vec to r s v1 and v2 around the
%vector n (n must be vector that i s not in the plane o f v1 and v2) .
func t i on a = vectorAngle (v1 , v2 , n)
x = c ro s s (v1 , v2) ;
%The dot product o f x and n t e l l s us i f the angle around n should be
%ca l cu l a t ed c l o ckw i s e or counter c l o ckw i s e
c = s ign (dot (x , n)) ∗norm(x) ;
a = atan2d (c , dot (v1 , v2)) ;
end

% Function to c a l c u l a t e angular v e l o c i t y
func t i on [AngVel , VelMidPoints] = ang l eVe lo c i ty (Q, T)
dt = mean(d i f f (T)) ;
VelMidPoints =T−dt /2 ;
AngVel=angvel (Q, dt , ' point ') ∗180/ pi ;
AngVel = [0 , 0 , 0 ; AngVel (2 : end , :)] ;
end

% Function to c a l c u l a t e angular a c c e l e r a t i o n
func t i on [AngAcc , AccMidPoints] = ang l eAcce l e r a t i on (AngVel , VelMidPoints)
dt = mean(d i f f (VelMidPoints)) ;
AccMidPoints = VelMidPoints − dt /2 ;
AngAcc = [0 , 0 , 0 ; d i f f (AngVel)] . / dt ;
end

% Function to p lo t quatern ions
func t i on plotQuaternion (Q, T, FileName)
FigQuat = f i g u r e (”Name” ,” Quaternions ”) ;
[qs , qi , qj , qk] = part s (Q) ;
t = t i l e d l a y ou t (4 ,1 , Ti l eSpac ing=”none ”) ;
x l ab e l (t , ”Time (s) ”)

n e x t t i l e
p l o t (T, qs , Color=”m”)
legend (” q0 ” , Locat ion=”northwest ”) ;
xlim ([9 51])
ylim ([0 . 1 2 0 . 4 8])

n e x t t i l e
p l o t (T, qi , Color=”b”)
legend (” q1 ” , Locat ion=”northwest ”) ;
xlim ([9 51])
ylim ([0 . 5 4 0 . 8 1])

64

A.2 QuaternionSphere

n e x t t i l e
p l o t (T, qj , Color=”r ”)
legend (” q2 ” , Locat ion=”northwest ”) ;
xlim ([9 51])
ylim ([0 . 1 8 0 . 4 6])

n e x t t i l e
p l o t (T, qk , Color=”g”)
legend (” q3 ” , Locat ion=”northwest ”) ;
xlim ([9 51])
ylim ([−0.71 −0.41])

saveas (FigQuat , FileName + ”\Quaternions . png ”)
end

%Function to p lo t ro tat ion , angular v e l o c i t y and angular a c c e l e r a t i o n
func t i on plotRotVelAcc (Rot , Vel , Acc ,T, FileName)
FigXAxis = f i g u r e ('Name ' , 'X−ax i s ') ;
helpPlotData (T, Rot (: , 1) , Vel (: , 1) , Acc (: , 1) , ”b”) ;
saveas (FigXAxis , FileName + ”\XAxis . png ”)

FigYAxis = f i g u r e ('Name ' , 'Y−ax i s ') ;
helpPlotData (T, Rot (: , 2) , Vel (: , 2) , Acc (: , 2) , ” r ”) ;
saveas (FigYAxis , FileName + ”\YAxis . png ”)

FigZAxis = f i g u r e ('Name ' , 'Z−ax i s ') ;
helpPlotData (T, Rot (: , 3) , Vel (: , 3) , Acc (: , 3) , ”g ”) ;
saveas (FigZAxis , FileName + ”\ZAxis . png ”)
end

func t i on helpPlotData (T, RotVec , VelVec , AccVec , c o l o r)
TRot=T(: , 1) ;
TVel=T(: , 2) ;
TAcc=T(: , 1) ;
t = t i l e d l a y ou t (3 ,1 , Ti l eSpac ing=”none ”) ;
x l ab e l (t , ”Time (s) ”)

n e x t t i l e ;
p l o t (TRot , RotVec , Color=co l o r) ;
xlim ([1 9 51]) ;
ylim ([−31 35]) ;
y l ab e l (” Angle (deg) ”)

n e x t t i l e ;
p l o t (TVel , VelVec , Color=co l o r) ;
xlim ([1 9 51]) ;
ylim ([−350 350]) ;
y l ab e l (” Ve loc i ty (deg/ s) ”)

n e x t t i l e ;
p l o t (TAcc , AccVec , Color=co l o r) ;
xlim ([1 9 51]) ;
ylim ([−310 310]) ;
y l ab e l (” Acce l e r a t i on (rad/ s ˆ2) ”)
end

A.2 QuaternionSphere

This code reads the collected quaternion data in each excel file and plots the
change in coordinates for each coordinate axis as points on a sphere. The
code is used to produce the graphs 3.4a, 3.4b, and 3.4c in section 3.2.2.

%Star t o f Code
c l c
c l e a r
c l o s e a l l

65

Appendix A. MATLAB code

%Names o f each Excel f i l e conta in ing quatern ion data
FileNames = [” Speed3 ” ,” Speed8 ” ,” Speed14 ”] ;

f o r k = 1 : l ength (FileNames)
% Def ine the f i l e paths
Fi lePath = ”C:\ Users\ jakob\Documents\MATLAB\Thes is \” + FileNames (k) +

” . x l sx ” ; % Add more f i l e paths as needed

% Import data from the Excel f i l e
Data = readtab l e (Fi lePath) ;

% Get unique time va lues
[temp , I nd i c e s] = unique (Data . Time) ;
UniqueData = Data (Ind i ce s , :) ;
Time = temp/1000;

% Calcu la te quatern ion
Quaternions = ca l cu la teQuate rn ion (UniqueData , [” qs ” ,” q i ” ,” q j ” ,” qk ”]) ;

%Find the mean ro t a t i on during the s t a r t to get the home po s i t i o n
I nd i c eS t a r t i n gPo s i t i o n = f ind (Time > 5 & Time < 15) ;
Quatern ionsStart = Quaternions (min (I nd i c eS t a r t i n gPo s i t i o n) :max(

I nd i c eS t a r t i n gPo s i t i o n)) ;
QuaternionHome = meanrot (Quatern ionsStart) ;

x = [1 0 0] ;
y = [0 1 0] ;
z = [0 0 1] ;

%Find the coo rd ina t e s f o r the three ax i s o f the home po s i t i o n in the
g l oba l

%coord inate system .
PointHomeX = ro ta t epo in t (QuaternionHome , x) ;
PointHomeY = ro ta t epo in t (QuaternionHome , y) ;
PointHomeZ = ro ta t epo in t (QuaternionHome , z) ;

%Rotate the point by each recorded quaternion , and get the new
coo rd ina t e s

%in the g l oba l system
PointsRotatedX = ro ta t epo in t (Quaternions , x) ;
PointsRotatedY = ro ta t epo in t (Quaternions , y) ;
PointsRotatedZ = ro ta t epo in t (Quaternions , z) ;

%Change the frame o f r e f e r e n c e to be the home po s i t i o n and get the
%coo rd ina t e s f o r each rotated point .
PointsHomeX = rotate f rame (QuaternionHome , PointsRotatedX) ;
PointsHomeY = rotate f rame (QuaternionHome , PointsRotatedY) ;
PointsHomeZ = rotate f rame (QuaternionHome , PointsRotatedZ) ;

p lotSphere (PointsRotatedX , PointsRotatedY , PointsRotatedZ , FileNames (k)
) ;

end

% Function to c a l c u l a t e quatern ion
func t i on Q = ca l cu la teQuate rn ion (data , inputVar iab l e s)
temp = rowfun(@quaternion , data , ” InputVar iab le s ” , inputVar iab les , ”

OutputVariableNames ” , ”q”) ;
Q = temp { : , ” q ”} ;
end

%Function to p lo t coo rd ina t e s o f a l l coo rd inate axes f o r each quatern ion .
func t i on plotSphere (PointsX , PointsY , PointsZ , FileName)
FigSphere = f i g u r e (”Name” ,” Sphere ”) ;
[X,Y,Z] = sphere ;
s u r f (X,Y,Z , FaceColor =[0.57 0 .57 0 . 5 7])
hold on
s c a t t e r 3 (PointsX (: , 1) , PointsX (: , 2) , PointsX (: , 3) ,” f i l l e d ”)
s c a t t e r 3 (PointsY (: , 1) , PointsY (: , 2) , PointsY (: , 3) ,” f i l l e d ”)
s c a t t e r 3 (PointsZ (: , 1) , PointsZ (: , 2) , PointsZ (: , 3) ,” f i l l e d ”)
c o l o r o rd e r ([” b” ” r ” ”g ”]) ;
view ([0 −90])
ax i s equal
hold o f f

66

A.3 QuaternionToMotorAngle

t i t l e (”X−, Y−, Z−coo rd ina t e s ”) ;
x l ab e l (”X”) ;
y l ab e l (”Y”) ;
z l a b e l (”Z”) ;
saveas (FigSphere , FileName + ”\Sphere1 . png”)
view ([0 0])
saveas (FigSphere , FileName + ”\Sphere2 . png”)
end

A.3 QuaternionToMotorAngle

This code is based upon the equations in section 5.1.2, and shows how the
result of equation 5.8 is calculated.
%Star t o f Code
c l e a r
c l c

%Var iab l e s f o r the three motor ang l e s .
syms beta1 beta beta3

% Coordinates o f the three o r i g i n a l coord inate axes .
X1 = [0 1 0 0] ;
Y1 = [0 0 1 0] ;
Z1 = [0 0 0 1] ;

%F i r s t quatern ion r o t a t i on .
R = [cos (beta1 /2) , 0 , 0 , 0] − s i n (beta1 /2) ∗Z1 ;

%Ca lcu la t ing new coo rd ina t e s o f y−ax i s
Y2 = ca lcy2 (R,Y1) ;

%Second quatern ion r o t a t i on
S = [cos (beta /2) 0 0 0] − s i n (beta /2) ∗Y2 ;

%Ca lcu la t ing new coo rd ina t e s o f y−ax i s
X3 = ca lcx3 (S ,R,X1) ;

%Third quatern ion ro t a t i on
T = [cos (beta3 /2) 0 0 0] − s i n (beta3 /2) ∗X3 ;

%Combining a l l three r o t a t i on s
Q(beta1 , beta , beta3) = s imp l i f y (quatmult i (T, quatmult i (S ,R))) ;

%S imp l i f i c a t i o n o f Q to make i t more readab le
QSimple (beta1 , beta , beta3) = [cos (beta1 /2) ∗ cos (beta /2) ∗ cos (beta3 /2) − s i n (

beta1 /2) ∗ s i n (beta /2) ∗ s i n (beta3 /2) ;
− cos (beta1 /2) ∗ cos (beta /2) ∗ s i n (beta3 /2) − cos (beta3 /2) ∗ s i n (beta1 /2) ∗ s i n (

beta /2) ;
cos (beta /2) ∗ s i n (beta1 /2) ∗ s i n (beta3 /2) − cos (beta1 /2) ∗ cos (beta3 /2) ∗ s i n (

beta /2) ;
− cos (beta /2) ∗ cos (beta3 /2) ∗ s i n (beta1 /2) − cos (beta1 /2) ∗ s i n (beta /2) ∗ s i n (

beta3 /2)] ;

%Ca l cu l a t e s the mu l t i p l i c a t i o n o f two quatern ions us ing matr i ces S = Q ∗ R
funct i on S = quatmult i (q , r)
Q = [q (1) , −q (2) , −q (3) , −q (4) ; q (2) , q (1) , −q (4) , q (3) ;

q (3) , q (4) , q (1) , −q (2) ; q (4) , −q (3) , q (2) , q (1)] ;
QR = Q ∗ r . ' ;
S = QR' ;
end

%Inve r s e s a quatern ion
func t i on Qinv = quatinv (Q)
Qinv = [Q(1) , −Q(2) , −Q(3) , −Q(4)] ;
end

%Ca l cu l a t e s the new value o f the y−ax i s based upon Y2 = R∗Y1∗Rˆ−1

67

Appendix A. MATLAB code

f unc t i on Y2 = ca lcy2 (R,Y1)
QY1 = quatmult i (R,Y1) ;
Qinv = quatinv (R) ;
Y2 = quatmult i (QY1, Qinv) ;
end

%Ca l cu l a t e s the new value o f the x−ax i s based upon X3 = S∗X2∗Sˆ−1
func t i on X3 = ca lcx3 (S ,R,X1)
QX1 = quatmult i (R,X1) ;
Qinv = quatinv (R) ;
X2 = quatmult i (QX1, Qinv) ;
RX2 = quatmult i (S ,X2) ;
Rinv = quatinv (S) ;
X3 = quatmult i (RX2, Rinv) ;
end

68

B
Arduino code

The code used to program the MCU is written using Arduino and is an
implementation of the controller design described in section 5.2. The following
Arduino packages, are used by the code:

• Arduino Simple Field Oriented Control (FOC)

• SPI

• SparkFun 9DoF IMU Breakout - ICM 20948

• RunningAverage

1 #inc lude ”SimpleFOC . h”
2 #inc lude ”SPI . h”
3 #inc lude ”SimpleFOCDrivers . h”
4 #inc lude ” encoders / as5048a /MagneticSensorAS5048A . h”
5 #inc lude ”ICM 20948 . h”
6 #inc lude ”RunningAverage . h”
7
8 #de f i n e LEDPIN PA7
9 #de f i n e CS1 PA15

10 #de f i n e CS2 PA8
11 #de f i n e AD0 VAL 1
12
13 in t count = 0 ;
14 bool mode = 0 ;
15 double r o l l = 0 , p i t ch = 0 , yaw = 0 ;
16 double qw , qx , qy , qz ;
17 double quat [4] = { 1 , 0 , 0 , 0 } ;
18 double motor ang l e s o ld [2] = { 0 . 0 , 0 .0 } ;
19 double motor angles new [2] = { 0 . 0 , 0 .0 } ;
20 double moto r ang l e s r e s [2] = { 0 . 0 , 0 .0 } ;
21 double a n g l e o f f s e t 1 = 62 ∗ PI / 90 ;
22 double a n g l e o f f s e t 2 = 58 ∗ PI / 90 ;
23
24 // c r ea t e running average array with s i z e 50
25 RunningAverage avgYaw(50) ;
26 RunningAverage avgPitch (50) ;
27
28 // c r ea t e IMU ins tance − I2C
29 ICM 20948 I2C myICM;
30 icm 20948 DMP data t data ;
31
32 // c r ea t e encoder i n s t anc e s − SPI
33 MagneticSensorAS5048A sensor1 (CS1) ;
34 MagneticSensorAS5048A sensor2 (CS2) ;
35
36 // c r ea t e BLDC motor and d r i v e r i n s t anc e s
37 BLDCMotor motor1 = BLDCMotor(7) ;
38 BLDCDriver3PWM dr ive r1 = BLDCDriver3PWM(PC0, PC1, PC2, PC13) ;
39 BLDCMotor motor2 = BLDCMotor(7) ;
40 BLDCDriver3PWM dr ive r2 = BLDCDriver3PWM(PA0, PA1, PA2, PC14) ;

69

Appendix B. Arduino code

41
42
43 void setup () {
44
45 // i n i t i a l i s e l ed pin
46 pinMode (LEDPIN, OUTPUT) ;
47
48 // i n i t i a l i s e IMU
49 in i t I 2C () ;
50
51 c a l i b r a t e () ;
52
53 SPI . setMOSI (PC12) ;
54 SPI . setMISO(PC11) ;
55 SPI . setSCLK(PC10) ;
56 SPI . begin () ;
57
58 // i n i t i a l i s e p o s i t i o n sensor (encoder)
59 sensor1 . i n i t () ;
60 sensor2 . i n i t () ;
61
62 // l i n k motor to po s i t i o n sensor
63 motor1 . l i nkSenso r (&sensor1) ;
64 motor2 . l i nkSenso r (&sensor2) ;
65
66 // i n i t i a l i s e d r i v e r
67 d r i v e r1 . i n i t () ;
68 d r i v e r2 . i n i t () ;
69
70 // l i n k motor to d r i v e r
71 motor1 . l i nkDr i v e r (&dr i v e r1) ;
72 motor2 . l i nkDr i v e r (&dr i v e r2) ;
73
74 //power supply vo l tage [V]
75 d r i v e r1 . vo l tage power supp ly = 8 ;
76 d r i v e r2 . vo l tage power supp ly = 8 ;
77
78 // Set motion con t r o l type (torque , v e l o c i t y or angle)
79 motor1 . c o n t r o l l e r = MotionControlType : : ang le ;
80 motor2 . c o n t r o l l e r = MotionControlType : : ang le ;
81
82 // Set modulation algor i thm (SinePWM or SpaceVectorPWM)
83 motor1 . foc modulat ion = FOCModulationType : : SpaceVectorPWM ;
84 motor2 . foc modulat ion = FOCModulationType : : SpaceVectorPWM ;
85
86 setMotorControlParameters () ;
87
88 // I n i t i a l i s e motor
89 motor1 . i n i t () ;
90 motor2 . i n i t () ;
91
92 //Align encoder and s t a r t FOC
93 motor1 . initFOC () ;
94 motor2 . initFOC () ;
95
96 de lay (1000) ;
97 }
98
99 void loop () {

100 // c a l l the FOC algor i thm
101 motor1 . loopFOC () ;
102 motor2 . loopFOC () ;
103
104 //move the motors to the ta rg e t angle accord ing to the FOC algor i thm
105 motor1 .move () ;
106 motor2 .move () ;
107
108 // get the cur rent o r i e n t a t i o n o f the dev i ce
109 read imu (motor angles new) ;
110
111 // c a l c u l a t e the new ta rg e t ang l e s
112 moto r ang l e s r e s [0] = motor ang l e s o ld [0] − motor angles new [0] ;
113 moto r ang l e s r e s [1] = motor ang l e s o ld [1] − motor angles new [1] ;

70

Appendix B. Arduino code

114 moto r ang l e s r e s [0] = cons t r a in (moto r ang l e s r e s [0] , −PI /4 , PI /4) ;
115 moto r ang l e s r e s [1] = cons t r a in (moto r ang l e s r e s [1] , −PI /4 , PI /4) ;
116
117 motor1 . t a r g e t = moto r ang l e s r e s [0] + a n g l e o f f s e t 1 ;
118 motor2 . t a r g e t = moto r ang l e s r e s [1] + a n g l e o f f s e t 2 ;
119 }
120
121 // i n i t i a l i z e I2C and s e t the c o r r e c t SDA and SCL pins f o r the board
122 void in i t I 2C () {
123 Wire . setSDA(PB9) ;
124 Wire . setSCL (PB8) ;
125 Wire . begin () ;
126 Wire . setClock (400000) ;
127
128 bool i n i t i a l i z e d = f a l s e ;
129
130 whi le (! i n i t i a l i z e d) {
131 myICM. begin (Wire , AD0 VAL) ;
132 i f (myICM. s ta tu s != ICM 20948 Stat Ok) {
133 delay (500) ;
134 } e l s e {
135 i n i t i a l i z e d = true ;
136 }
137 }
138
139 bool su c c e s s = true ;
140 suc c e s s &= (myICM. in i t ia l i zeDMP () == ICM 20948 Stat Ok) ;
141 suc c e s s &= (myICM. enableDMPSensor (INV ICM20948 SENSOR ROTATION VECTOR) ==

ICM 20948 Stat Ok) ;
142 suc c e s s &= (myICM. setDMPODRrate(DMP ODR Reg Quat9 , 0) ==

ICM 20948 Stat Ok) ;
143 suc c e s s &= (myICM. enableFIFO () == ICM 20948 Stat Ok) ;
144 suc c e s s &= (myICM. enableDMP () == ICM 20948 Stat Ok) ;
145 suc c e s s &= (myICM. resetDMP () == ICM 20948 Stat Ok) ;
146 suc c e s s &= (myICM. resetFIFO () == ICM 20948 Stat Ok) ;
147 }
148
149 void setMotorControlParameters () {
150 // Ve loc i ty c o n t r o l l e r parameters f o r motor 1
151 motor1 . PID ve loc i ty .P = 0 . 5 ;
152 motor1 . PID ve loc i ty . I = 5 . 0 ;
153 motor1 . PID ve loc i ty .D = 0 . 0 01 ;
154 motor1 . PID ve loc i ty . output ramp = 1000;
155 motor1 . LPF veloc i ty . Tf = 0 . 0 1 ; //10ms
156 motor1 . v o l t a g e l im i t = 7 . 4 ; // vo l t
157 motor1 . c u r r e n t l im i t = 2 ; //amps
158
159 //Angle c o n t r o l l e r parameters f o r motor 1
160 motor1 . P angle .P = 30 ;
161 motor1 . P angle . I = 10 ;
162 // motor1 . P angle .D = 0 ;
163 // motor1 . P angle . output ramp = 10000; // rad/ s ˆ2
164 // motor1 . LPF angle . Tf = 0 ;
165 motor1 . v e l o c i t y l im i t = 40 ; // rad/ s
166
167 // Ve loc i ty c o n t r o l l e r parameters f o r motor 2
168 motor2 . PID ve loc i ty .P = 0 . 1 ;
169 motor2 . PID ve loc i ty . I = 1 . 0 ;
170 motor2 . PID ve loc i ty .D = 0 . 0001 ;
171 motor2 . PID ve loc i ty . output ramp = 1000;
172 motor2 . LPF veloc i ty . Tf = 0 . 0 1 ; //10ms
173 motor2 . v o l t a g e l im i t = 7 . 4 ; // vo l t
174 motor2 . c u r r e n t l im i t = 2 ; //amps
175
176 //Angle c o n t r o l l e r parameters f o r motor 2
177 motor2 . P angle .P = 20 ;
178 motor2 . P angle . I = 5 ;
179 // motor2 . P angle .D = 0 ;
180 // motor2 . P angle . output ramp = 10000; // rad/ s ˆ2
181 // motor2 . LPF angle . Tf = 0 ;
182 motor2 . v e l o c i t y l im i t = 40 ; // rad/ s
183 }
184

71

Appendix B. Arduino code

185 // g i v e s the IMU time to c a l i b r a t e i t s e l f , and reads the s t a r t i n g ang l e s
186 void c a l i b r a t e () {
187 d i g i t a lWr i t e (LEDPIN, HIGH) ;
188 in t time = m i l l i s () ;
189 whi le (m i l l i s () − time < 2000)
190 ;
191 d i g i t a lWr i t e (LEDPIN, LOW) ;
192 read imu (motor ang l e s o ld) ;
193 }
194
195 // reads the IMU and update the cur rent and prev ious o r i e n t a t i o n o f the

dev i ce
196 void read imu (double ∗ angle) {
197 myICM. readDMPdataFromFIFO(&data) ;
198 i f ((myICM. s ta tu s == ICM 20948 Stat Ok)) {
199 i f ((data . header & DMP header bitmap Quat9) > 0) {
200 qx = ((double) data . Quat9 . Data .Q1) / 1073741824 .0 ; // Convert to

double . Divide by 2ˆ30
201 qy = ((double) data . Quat9 . Data .Q2) / 1073741824 .0 ; // Convert to

double . Divide by 2ˆ30
202 qz = ((double) data . Quat9 . Data .Q3) / 1073741824 .0 ; // Convert to

double . Divide by 2ˆ30
203 qw = sqr t (1 . 0 − ((qx ∗ qx) + (qy ∗ qy) + (qz ∗ qz))) ;
204
205 quat [0] = qw ;
206 quat [1] = qx ;
207 quat [2] = qy ;
208 quat [3] = qz ;
209 qua t to ang l e (quat , ang le) ;
210
211 avgYaw . addValue (angle [0]) ;
212 avgPitch . addValue (angle [1]) ;
213
214 motor ang l e s o ld [0] = 0.1∗avgYaw . getAverage () + 0.9∗ motor ang l e s o ld

[0] ;
215 motor ang l e s o ld [1] = 0.1∗ avgPitch . getAverage () + 0.9∗

motor ang l e s o ld [1] ;
216 }
217 }
218 }
219
220 // conver t s a quatern ion in to motor ang l e s
221 void qua t to ang l e (double ∗ quat , double ∗ angle) {
222 angle [0] = 2 ∗ atan(−quat [3] / quat [0]) ;
223 angle [1] = 2 ∗ atan (quat [2] / quat [0]) ;
224 }

72

	Title Page
	Contents
	Introduction
	Background
	State of the Art
	Problem formulation and objectives
	Limitations
	Course of work
	Contribution
	Outline

	Technical background
	Image stabilization
	Optical image stabilization
	Electronic image stabilization
	Mechanical image stabilization

	Gyroscope
	Accelerometer
	Magnetometer
	Inertial measurement unit
	Sensor fusion
	Brushless direct current motor
	Field-oriented control
	Coordinate systems
	Nautical sequence
	Gimbal lock
	Quaternions

	Image stabilization requirements
	Data gathering
	Data processing
	Quaternion data
	Range of motion
	Angular rotation, velocity, and acceleration calculations

	Data evaluation

	Prototype design
	Choice of image stabilization system
	Concept Generation & Selection
	General system architecture
	Component selection
	CAD models
	First iteration
	Second iteration
	Third iteration

	Final Prototype design

	System Implementation
	Kinematics
	Coordinate systems
	Conversion between quaternions and motor angles
	Controller objective

	Software implementation
	Motor angle calculation
	Motor control algorithm

	Final evaluation
	Evaluation setup
	Evaluation results
	Evaluation discussion

	Conclusions
	General
	Further work

	Bibliography
	MATLAB code
	QuaternionAngles
	QuaternionSphere
	QuaternionToMotorAngle

	Arduino code

